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Introduction :
e . » . . Network Architecture
" Applications: robotic system, vision-based acoustic and optical property ~ . _ _ ,
actimation " The encoder backbone provides cross-resolution features by merging adjacent patches at each transformer stage.

" The backward attention module aggregates these cross-resolution features.

" The feature merging module with a residual connection makes the network learn complementary features.

Backbone Encoder

" Challenge of image-based material segmentation:
* A specific material can have a variety of appearances, such as shape,
colour and transparency.
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Methodology Analysis
" Idea: combining material features and contextual features. = The DBAT outperforms the second-best model in this paper by 2.15% in pixel accuracy.
" Material features (in image patches) allow the network to identify the = The boundary quality is more adequate than the segments predicted by other networks.
categories without covering all varied appearances. = All chosen models can work in real-time. : |
" Contextual features (in full image) can limit the possible categories of I“"*«‘I ¢
. . . s -
materials that appear in a given scene. e - .
Datasets LMD OpenSurfaces - |
Architecture Pixel Acc Mean Acc Pixel Acc Mean Acc mloU | #params (M) #flops (G) FPS Image DBAT ResNet-152 ResNest-101
ResNet-152 80.68 = 0:11° 73 .87 =F 0.25 83.80 63.56 52.09 60.75 7027 3135
ResNeSt-101 8245 == 0.2075.31=F 0.29 85.10 67.13 5532 48.84 63.39 25.57
EfficientNet-b5 83.17 £ 0.06 76.91 &+ 0.06 84.63 65.47 5325 30.17 20.5 27.00
Swin-t 84.70 £ 0.26 79.06 & 0.46 86.19 69.41 ST 711 29.52 34.25 33.94 ‘
CAM-SegNet-DBA | 86.12 +=0.15 79.85 + 0.28 86.64 69.92 58.18 68.58 60.83 17.79 -4 bl
DBAT 86.85 + 0.08 81.05 £ 0.28 86.28 70.68 58.08 56.03 41.23 27.44 s b
- DLMD (Ground Truth) EfficientNet-b5 Swin-t CAM-SegNet-DBA
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: v —y P 2 - Conclusion & Future Work
ontextual Teatures In Tull IMmage aterial Teatures In Image Patches . . . .
5 5 = QOur DBAT beats all chosen models that can serve real-time applications on two datasets, and achieves comparable
" Proposed method: segmenting the images with material features performance with fewer FLOPs than the multi-branch CAM-SegNet [2].
extracted from cross-resolution patches. " |n the future, we plan to interpret the material features that our DBAT learns by comparing them with features
TR TS extracted from different tasks, such as object segmentation.
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