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1 Training Configuration
As for the training process, we notice that networks may not perform well on the LMD [3].
One possible reason is the Adam optimiser, which is proved to impair the generalisation
ability of networks [12]. To improve the network performance, three advanced technologies
were adopted: the AdamW optimiser [6], the linear learning rate warm-up [7], and the poly-
nomial learning rate decay [1]. Furthermore, as the LMD images have various sizes, we crop
the image into 512 × 512 patches to facilitate batch normalisation [9]. Equipped with these
training methods, we successfully boost the Pixel Acc to above 85% from below 70% [3].

2 Per-Category Performance Analysis
This section describes the performance analysis of models on the LMD for each material
category. Our DBAT achieves the highest accuracy (averaged across five runs) for four ma-
terials, fabric, soil, stone, and wood. Compared with the second best accuracy for these
materials, DBAT increases the accuracy by 2.39%, 4.28%, 13.63% and 2.36% respectively.
For foliage, metal, plastic, rubber, and water, the performance of DBAT is close to the second
best accuracy, with decrements of -0.22%, -1.6%, -1.04%, -0.57%, and -0.34%.

3 Centered Kernel Alignment
The entity of the CKA matrix is calculated with Equation 1, where HSIC1 stands for the
unbiased estimator of the Hilbert-Schmidt independence criterion [10]. Since HSIC1 = 0
only when X and Y are independent, and CKA is invariant to isotropic scaling, they together
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Model DBAT ResNet-152 ResNeSt-101 EfficientNet-B5 Swin-t CAM-SegNet-DBA

Asphalt 88.66 ± 0.72 88.66 ± 0.17 94.35 ± 0.27 82.17 ± 2.80 91.83 ± 1.09 89.87 ± 1.94
Ceramic 68.31 ± 1.31 65.29 ± 3.19 62.86 ± 0.67 73.34 ± 0.42 75.35 ± 0.42 75.01 ± 0.64
Concrete 66.90 ± 1.07 50.89 ± 1.67 60.53 ± 2.00 59.36 ± 2.98 57.42 ± 4.88 69.20 ± 2.81

Fabric 93.14 ± 0.16 85.53 ± 0.22 86.420 ± 0.92 85.33 ± 0.20 88.71 ± 0.50 90.79 ± 0.43
Foliage 95.35 ±0.12 93.55 ± 0.33 91.25 ± 1.16 88.21 ± 0.32 95.57 ± 0.45 94.04 ± 0.79
Food 93.27 ± 0.22 90.27 ± 0.22 94.96 ± 0.34 95.84 ± 0.14 92.51 ± 0.83 95.19 ± 0.24
Glass 73.27 ± 0.67 72.58 ± 2.50 68.33 ± 0.34 77.83 ± 0.94 77.95 ± 0.99 84.88 ± 1.11
Metal 79.99 ± 0.51 75.35 ± 0.94 80.66 ± 0.34 76.67 ± 0.28 81.54 ± 1.36 81.83 ± 0.48
Paper 73.83 ± 0.67 64.52 ± 2.87 71.14 ± 1.99 77.21 ± 0.13 63.05 ± 1.90 66.48 ± 1.43
Plaster 71.43 ± 0.71 68.01 ± 0.53 78.76 ± 0.62 73.11 ± 0.64 78.12 ± 1.90 72.37 ± 1.03
Plastic 50.62 ± 1.45 34.87 ± 1.21 36.07 ± 3.42 39.59 ± 0.64 51.64 ± 1.31 52.07 ± 2.28
Rubber 82.61 ± 1.01 77.08 ± 3.61 79.57 ± 1.62 69.73 ± 0.29 83.48 ± 0.67 81.63 ± 1.79

Soil 84.25 ± 0.50 73.27 ± 1.63 73.15 ± 2.67 79.73 ± 0.55 76.89 ± 1.11 80.39 ± 1.73
Stone 86.94 ± 0.95 69.66 ± 1.42 52.12 ± 0.93 70.07 ± 0.76 73.05 ± 1.92 60.73 ± 2.76
Water 97.12 ± 0.10 95.49 ± 0.33 97.54 ± 0.28 95.30 ± 0.32 95.78 ± 0.70 94.95 ± 0.69
Wood 90.53 ± 0.37 76.05 ± 1.08 76.71 ± 1.23 86.69 ± 0.24 82.03 ± 1.11 87.63 ± 0.98

PixelAcc 86.85 ± 0.08 80.68 ± 0.11 82.45 ± 0.20 83.17 ± 0.06 84.71 ± 0.26 86.12 ± 0.15
MeanAcc 81.05 ± 0.28 73.87 ± 0.25 75.31 ± 0.29 76.91 ± 0.06 79.06 ± 0.46 79.85 ± 0.28

Table 1: Per-category performance analysis. The networks are trained five times to report
the uncertainty.

Figure 1: Boxplot of the performance on the LMD across five runs.
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Attn1 Attn2 Attn3 Attn4 GT

Figure 2: Attention mask visualisation. GT: ground truth. The densely labelled ground truth
images are collected from [3].

give a meaningful comparison of two networks with different architectures [4]. More detail
about the CKA matrix is included in the supplementary material.

CKA(X ,Y ) =
HSIC1(XXT ,YY T )√

HSIC1(XXT )HSIC1(YY T )
(1)

4 Attention Analysis
This section analyses the dynamic attention module by visualising the attention masks and
calculating their descriptive statistics, including the average attention weights as well as the
equivalent attention patch resolutions. Figure 2 shows the attention masks for images in
the LMD test set. From Attn1 to Attn4, the patch resolution increases. It is discovered that
the material covering multiple small objects or a small area tends to depend on the features
extracted from small patch resolution. For example, the first column images in Figure 2
highlight the regions that the network concentrates on. The wooden area in the first row
covers both the desk and the floor. The wooden chairs and the fabric floor are mutually
overlapping in the second row. These objects or material regions are mutually overlapping,
and small patches can isolate them and learn features at the boundaries.

Figure 3 shows the average attention weight in (a) and the equivalent patch size in (b,
the box plot). The equivalent patch size, which represents the attention distance of each
attention head, is calculated by transforming the attention diagonal distance in [8] to the side
length of a square. As expected, the aggregated features mostly (52.40%) depend on Attn4,
which is thoroughly processed by the whole backbone encoder, with an average patch size of
74.31. Apart from Attn4, the aggregated features also depend on feature maps extracted from
small patch sizes. For example, Attn3 is extracted from an average patch size of 31.68, and
it contributes 30.50% to the aggregated features. Although Attn1 is gathered from a shallow
stage of the network, the aggregated features still depend on it to handle the overlapping
material regions with a patch size of 6.75 on average.

To further illustrate the effect of the dynamic backward attention module, the similarity
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Figure 3: The descriptive analysis of attention weights.

scores comparing one layer with Map1,2,3,4 from the CKA matrix is reported in Figure 3.
(b, the line plot). The blue line compares Map4 from the Swin encoder, and the orange line
compares the aggregated features from the DBAT. The increased similarity scores against
Map1,2,3 clearly show that the aggregated feature depends on information from shallow lay-
ers.

5 Qualitative Analysis
This section shows the predicted material segmentation for three images. In Figure 4,
ResNet-152 [2], ResNest-101 [13], Swin-t [5], and CAM-SegNet-DBA [3] segment the bed
as fabric. However, the floor appears to be covered with a carpet whose material looks like
fabric. The proposed DBAT and the EfficientNet-b5 [11] break the object boundary and
segment part of the floor as fabric. Moreover, the DBAT segmented image have less flying
pixels compared with the EfficientNet-b5. This indicates that the DBAT segments the images
based on generalisable material features that are not related to contextual information such
as objects.

The segmented materials in Figure 5 and Figure 6 provide more evidence that the DBAT
can segment the images well with features extracted from cross-resolution patches. In Fig-
ure 5, the boundary between the wooden window frame and glass made windows in DBAT
segmented image is more adequate than the segments predicted by other networks. In Figure
6, the segmented fabric aligns well with the ground truth with no noisy predictions. Con-
sidering the training of DBAT takes sparsely labelled segments, it is reasonable to say that
DBAT learns the difference between materials from cross-solution patches.
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Image ResNet-152 ResNest-101

EfficientNet-b5DLMD Swin-t CAM-SegNet-DBA

DBAT

Figure 4: Predicted segmentation of one bedroom image.

Image ResNet-152 ResNest-101

EfficientNet-b5DLMD Swin-t CAM-SegNet-DBA

DBAT

Figure 5: Predicted segmentation of one living-room image.
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Image ResNet-152 ResNest-101

EfficientNet-b5DLMD Swin-t CAM-SegNet-DBA

DBAT

Figure 6: Predicted segmentation of another living-room image.
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