
AKAR, SENTURK, IKIZLER-CINBIS: MAC 1

MAC: Mask-Augmentation for Motion-Aware
Video Representation Learning

Arif Akar1,2

arifakar@gmail.com

Ufuk Umut Senturk1,2

ufukumutsenturk@gmail.com

Nazli Ikizler-Cinbis1

nazli@cs.hacettepe.edu.tr

1 Department of Computer Engineering
Hacettepe University
Ankara, Turkey

2 ASELSAN MGEO, Inc.
Ankara, Turkey

Abstract

We present MAC, a lightweight, efficient, and novel Mask-Augmentation teChnique
and pretext task for self-supervised video representation learning. Most recent and suc-
cessful methods leverage the instance discrimination approach that requires heavy com-
putation and often leads to inefficient and exhaustive pretraining. We apply MAC aug-
mentation on videos by blending foreground motion using frame-difference-based masks
and set up a pretext task to recognize applied transformation. While we incorporate a
game of predicting the correct blending multiplier at the pretraining stage, our model is
enforced to encode motion-based features which are then successfully transferred to ac-
tion recognition and video retrieval downstream tasks. Furthermore, we demonstrate the
extension of the proposed approach step-by-step to improve representation capabilities
in a joint contrastive framework. The proposed method achieves superior performance
on UCF-101, HMDB51, and Diving-48 datasets at low resource settings and competitive
results with instance discrimination methods at costly computation settings1.

1 Introduction
Considering the abundance of unannotated raw video data, video representation learning
is one of the domains that can potentially favor most from the self-supervised learning
paradigm. The spirit of self-supervised learning lies in the heart of finding useful information
from the data itself. Different from the image domain, temporal dimension of videos enables
an additional direction to explore useful and supervisory consistencies in data [33, 52, 55].
There has been a tendency in early works to use only simple transformations to extract use-
ful signals from data. Recent works, on the other hand, enforce models to become invari-
ant and/or equivariant to applied transformations. Some works aim for spatial-invariance
[12, 47] and others aim for invariance/equivariance to temporal transformations [26, 37] to
improve representation capabilities of models.

Videos naturally contain redundant information[15] that consists of background for the
most part. Models tend to learn clues from static background to solve a particular objective

© 2022. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

1Codes are available at https://github.com/ufukpage/MAC_SSL.
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Figure 1: Clip (C) and Mask Augmented Clip (MAC) are preprocessed with different spa-
tial and identical temporal augmentations. During pretraining, we train encoder via self-
supervised and contrastive losses, both utilize novel mask augmentation technique MAC.
Contrastive objective controls representation space globally by pulling distinct variants of
the same video samples together and pushing instance representation of different video sam-
ples apart. This creates local clusters that are diversified by the self-supervised objective.
The self-supervised objective enables the model to learn the internal structure of the clusters
as the contrastive objective helps the discriminating potential of the model. Purple dotted
area represents mask extraction and blending part.

that is not always semantically correct for that objective. Recent works have demonstrated
that existing methods suffer from background bias problem [10, 32] and several works try to
address this problem by decomposition of motion and scene elements [25, 42, 43, 46, 47, 48].

To mitigate this problem efficiently, we think that focusing on the regions of motion can
be beneficial. To extract motion information, we take a voluntary choice of using a very
simple and noisy form of dynamic foreground that can be computed as time-derivative of
videos, i.e., frame differences. We verify that although noisy, foreground masks still possess
strong potential as pseudo ground-truth supervision.

To this end, we extract binary motion masks by simple frame difference with a mo-
mentum structure. We then augment each frame by blending the extracted motion masks
using a multiplier that is further utilized as a supervisory signal in a self-supervised ob-
jective. We call this approach MAC: Mask-Augmentation teChnique. We believe that our
self-supervised objective enables any model to embed background-invariant representations
of a video instance that are locally distinctive in representation space. Consequently, since
MAC is a temporal transformation based on temporal derivatives and has a transformation-
recognition objective, it enforces the model to become equivariant against spatio-temporal
transformations. Additionally, we propose a contrastive objective for improving represen-
tation space. In our contrastive framework, we sample two views of the same instance and
apply basic spatial and temporal data augmentations without changing the frame sequence.
However, we apply MAC only on query view so that moving parts are further spatially di-
versified, but temporal relations are kept unchanged. Since we define these views as positive
pairs, the strongest consistency between them remains as temporal motion patterns. Thus, the
model focuses on pulling their representations globally by encoding motion and extracting
background-invariant representations thanks to the proposed mask augmentation. By link-
ing similarity relation over motion, contrastive objective works as a global force between
different instances while self-supervised objective works instance-wise, i.e., locally. Figure
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1 presents how self-supervised and contrastive objectives presumably operate in latent space.
We examine the performance of our main method and its variants for action recognition

and video retrieval. We extensively conduct ablative studies corresponding to particular
design choices. Our experiments demonstrate that the proposed MAC method performs on
par with state-of-the-art methods in low resource settings, and competitive against state-of-
the-art instance-discrimination methods with large-scale setups on mentioned downstream
tasks. In summary, our contributions are as follows:

• We propose a simple yet effective mask augmentation technique that utilize regions of
motion via foreground masks computed by frame differences.

• We propose a novel self-supervised objective, denoted as MAC-S, based on predicting
the largely imperfect foreground masks. Moreover, we demonstrate how our fore-
ground based augmentation can be used in combination with our novel contrastive
objective, denoted as MAC-C.

• To the best of our knowledge, MAC is the first work that aims both background-
invariance and spatio-temporal equivariance by exploiting transformation-recognition
paradigm and utilizing motion cues as consistency signal.

2 Related Work

2.1 Contrastive Video Representation Learning
Representation learning using contrastive objective aims at extracting rich and useful features
by discriminating instances based on positive and negative pair relations. After promising
results in image domain[4, 7, 17, 21, 22], contrastive learning have been extensively applied
for video data that can leverage an additional temporal dimension [2, 14, 19, 35, 36, 37].
In the context of video, there has been a wide pool of ideas to define positive and negative
pairs. [46] proposes a spatial disturbance transformation to define positive pairs that could
change local statistics but doesn’t change the motion, [51] finds positive pairs by using a
soft nearest neighbor search, [53], links positive pairs within the same video when they have
correspondences of parts and objects among frames. Similar to ours, [12, 47] perform a
blending operation for enhancing foreground on query view to create positive pairs.

2.2 Pretext-task Based Video Representation Learning
Pretext tasks based on spatio-temporal transformations. The initial attempts of pretext-
based video representation learning include learning basic spatial transformations including
cropping, rotating, warping or prediction-as-a-game [1, 29, 30, 34, 56]. Recent works in-
clude pretext tasks based on temporal order of frames or clips seeking to hypothesize over
consistency and coherency of temporal features [27, 33, 49, 52]. Hu et al. [23] propose a
simple task to enforce network to guess whether an augmented clip is preceded or followed
by other augmented clips, [27, 33] proposes multi-objective training seeking the comple-
mentary success of both temporal and spatial transformations and show that extraction of
both spatial and temporal information indeed leads to better results. Pretext tasks based on
speed/frame rate have been largely studied in self-supervised learning [3, 6, 9, 45, 54, 55].

Pretext tasks based on motion. Motion is one of the strongest signals that can be utilized
in video representation learning. Although speed-based self-supervision indirectly makes
use of motion cues, there are works that directly focus on motion. Diba et al. [11] combine
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Figure 2: MAC pretraining framework. Foreground pixels of a video clip C are designated
by binary foreground masks. FG region is multiplied with blending parameter α and merged
with untouched background pixels to form mask-augmented clip. α is utilized as pseudo-
ground truth to provide supervisory signal in self-supervised objective. During pretraining,
we force our model to predict randomly sampled α by focusing on moving foreground that
leads to learn motion-aware features. Contrastive-objective is not shown for simplicity.

visual appearance and motion learning in a dynamic motion representation layer, and [44]
accommodate patches with pre-set trajectories into frames that constrains network to learn
motion representations with pseudo-tracking.

Hybrid Approaches The combination of both pretext-based and contrastive learning meth-
ods have also caught attention in recent works [13, 40, 45]. [45] utilizes speed similarity
to define positive pairs, Tao et al. [40] show that pretext task can be combined with a con-
trastive objective and both objectives provide a combination of local and global views in
representation space.

3 Proposed Approach
The proposed MAC framework is illustrated in Figure 2. The core idea is to first extract the
motion masks over the consecutive frames and then to utilize a motion-aware self-supervised
objective to guide representation learning. Below, we first describe the foreground mask
extraction procedure and then present our pretext method in detail. Lastly, we introduce the
possible directions to create strong variants of our method.

3.1 Extracting Foreground Masks
The binary foreground masks are computed for each frame of a sampled clip on the fly.
The idea is to extract motion information from frames in the form of foreground masks
and use it as supervisory signal in pretraining. Since the time difference between frames is
relatively small, static background can be subtracted to give a reasonable representation of
active foreground and corresponding change in the scene.

A simple idea is to use a momentum structure to keep the track of background history
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similar to (but simpler than) that of [50]. Instead of taking a direct difference with cur-
rent and previous frame, background is modeled using a moving average of recent frames.
Accounting a brief history of the previous frames is an intuitively simple solution against
illumination changes, ghosting effects or relative background motion. We provide steps of
mask extraction as pseudo-code in Supplementary Work.

3.2 MAC Augmentation and Pretext Task MAC-S
Given a dataset D that consists of N video clips, we randomly sample clips Xi = {xi j, j ∈
1 . . .F} of length F , using varying temporal strides T where T is sampled once from {1,2,3,4}
for each clip X . T provides different motion patterns of the same video by changing sam-
pling rate, hence can be seen as temporal augmentation. The resulting input is designated as
Xi ∈ RC×F×H×W , where C is the number of input channels, H and W are spatial dimensions
of frames. We extract binary foreground masks for each frame in clip Xi and denote them
as Mi = {mi j, j ∈ 1 . . .F}. With a blending function, we multiply each clip X’s foreground
region with a scalar α and merge with the background to construct the clip X̂ such that

X̂ = α × (M⊙X)+((1−M)⊙X) (1)

where (1−M) is the inverse of M and ⊙ is an element-wise product. Foreground multiplier
α in range (0,1] is then used as a pseudo-label for self-supervision. Finally, we apply a set of
basic augmentations on each frame to conclude preprocessing. The final augmented clip X̂ is
fed through a 3D-CNN network and model is trained with the self-supervised loss to predict
the foreground multiplier α . We pose self-supervised objective as a classification task and
utilize cross-entropy loss. In the rest of the paper, we will use MAC to denote augmentation
process and MAC-S to refer to the corresponding self-supervised pretext task for predicting
α’s in pretraining.
Degenerate Solutions. Since MAC is a transformation at pixel level, there is a possibility
that any enough-capacity network could potentially reverse engineer the prediction game
without learning any motion features at all. In fact, we observe that without any standard
augmentation, model tends to find shortcuts and converge to degenerate representations that
do not transfer to downstream tasks well. Hence, we adapt strong augmentations to make
sure that model does not receive any identical MAC-augmented frames of the same video
instance. For instance, we apply color jittering on each frame to hinder the network from
taking advantage of the overall color histogram as mentioned in [28]. In this way, the model
learns to focus on motion in order to correctly predict the multiplier.

3.3 Variants of MAC
Using Multiple α’s. To increase the complexity of α-prediction, we can extend the task
to predict distinct α values for distinct subclips. We denote this pretext task as MAC-S-n,
where each clip is equally divided into n subclips, each having F/n frames and we randomly
sample a distinct α value for each subclip. We use same α value for all frames in a subclip
and set up the pretext task to find the correct α for each subclip. It should be noted that
model should find correct predictions for each subclip to satisfy the classification objective.

Let k indicate the number of different values that α can take. In this case, there will
be a total of kn possible cases for the classification objective. For example, for the task
with 4 subclips denoted as MAC-S-4, there are 44 possible classes which makes it a harder
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classification task than MAC-S-2 model which tries to solve for 42 classes. In the former
case, the network is more constrained to embed each subclip representations distinctively to
solve for each α . We conjecture that this will in return potentially increase spatio-temporal
variance in the representation space and our experimental results support this claim.

Combination with Contrastive Objective. MAC aims to extract video representations
based on dynamic foreground regions. It is expected that the representations of the videos of
the same class should also be similar as long as motion pattern is similar. In order to leverage
this property and increase the regularization of pretraining phase, we combine MAC with a
contrastive objective. Our contrastive objective is based on InfoNCE [18] loss for which we
apply MAC on query samples along with standard augmentations previously mentioned. The
key samples are preprocessed only with standard augmentations. We observed that MAC-C
with contrastive objective brings strong improvements due to reasons that are detailed in the
discussion in Introduction regarding contrastive objective.

In practice, MAC-C-n is optimized with InfoNCE loss using the similar setting in [21].
Query clip is denoted as q and key clip with only basic augmentations applied is denoted as
k+. Following the previous works, negative samples are coming from other videos that have
been added to queue and the contrastive loss LContrastive is defined as

LContrastive =−log
exp(q.k+/τ)

∑
K
i=0 exp(q.ki/τ)

(2)

where τ is the temperature parameter that controls similarity/distance strength of embeddings
in representation space.

Consequently, we introduce MAC-SC-n, that is a joint-optimization framework including
both contrastive and self-supervised objectives. Specifically, we pretrain our models with
both self-supervised and contrastive losses as follows:

LTotal = λ ∗LSelf-Supervised +β ∗LContrastive (3)

Here, β is defined as a weight parameter that controls the contribution of contrastive loss and
LSelf-Supervised is defined as cross-entropy loss which is controlled by λ . Empirically, λ and
β are set to 1 and 0.5 respectively in a default setting.

4 Experiments

Firstly, we inspect the contribution of each element through ablation studies. Then we
present our experiments on downstream tasks including action recognition and video re-
trieval. We also examine the learning behavior both quantitatively and qualitatively. More
evaluation with ablation experiments, details on experimental settings and failure case anal-
ysis with visualizations are available in Supplementary Material.

For self-supervised pretraining and action recognition downstream tasks, we utilize var-
ious benchmark datasets. UCF101 [39] is a widely used human action recognition dataset
that contains more than 13k videos of 101 actions, of which 9.5k videos used for training
and 3.5k videos used for test. HMDB51 dataset [31] contains nearly 7k videos of 51 human
actions. Lastly, Kinetics400 [5] is a large video dataset that contains nearly 240k videos of
400 human actions. For fair comparison, we follow the same experimental setup in [44].
We also experiment with less-biased Diving48 dataset that has 18k videos of 48 fine-grained
classes.
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Method Acc

Contrastive Obj. (w/o MAC aug.) 69.5
MAC-S-2 (SSL Obj., β=0) 81.5 (↑ 12%)
MAC-C-2 (Contrastive Obj., λ=0) 81.5 (↑ 11.9%)
MAC-SC-2 84.8 (↑ 15.3%)

Table 1: Contribution of each learn-
ing objective; self-supervised loss vs
contrastive loss vs joint optimization
( MAC-SC-2). First row shows con-
trastive objective when only standard
augmentations are applied. Comple-
mentary performance of SSL and con-
trastive objective results in an im-
proved representation learning.

# of Multiplier Acc

MAC-SC-1 (4-way classification) 82
MAC-SC-2 (2x 4-way classification) 83.5 (↑ 1.5%)
MAC-SC-2 (16-way classification) 84.8 (↑ 2.8%)
MAC-SC-4 (256-way classification) 84.2 (↑ 2.2%)
MAC-SC-4* (256-way classification) 87.8 (↑ 6.8%)

Table 2: Impact of multiple αs. In-
creasing number of α improves per-
formance as long as there are enough
frames in the subclip. MAC-SC-4* is
pretrained with 64 frames (16 frames
per α) and performs significantly bet-
ter while 16-frame version suffers due
to having 4 frames per α .

4.1 Implementation Details
Pretraining. We use a 3D CNN backbone and a single fully connected layer for self-
supervised pretraining. For a fair comparison with previous works, we choose common
backbones that have been extensively used in video representation learning. We utilize
R(2+1)D-18 ([41]) for all ablation experiments and we also report downstream task results
for R3D-18 ([20]). We apply standard augmentations such as resize, crop, horizontal flip,
temporal jitter, color jitter, grayscale randomly. The number of different values that α can
take k = 4 is set for all experiments. All models are pretrained for 300 epochs on UCF101
and 80 epochs on K400. We use SGD optimizer with momentum of 0.9 and weight decay
of 1e-4. The initial learning rate is set as 0.01 which is decayed by factor 0.1 after each 100
epochs for UCF101, and after each 30 epochs for K400.
Downstream Tasks. For the finetuning stage, we transfer the weights of pretrained MAC
models and use a randomly initalized fully connected layer for action recognition classifi-
cation. We utilize R(2+1)D-18 and R3D backbones and report results for both. For video
retrieval, we directly use pretrained models without any finetuning. Following practices in
[52], we report Recall at k (R@k) results. If the top-k nearest neighbours include a video
belonging to the same class of the query video, it is counted as a correct retrieval. All fine-
tuning experiments are trained for 150 epochs. The initial learning rate is set as 0.01 which
is decayed by factor 0.1 at 60th and 120th epoch.
Evaluation on Action Recognition. Following the common practice [52], we randomly
sample 10 clips from test videos and average of these results are used for final evaluation.

4.2 Ablation Studies
In order to analyze the design choices of our proposed approach, we present various ablation
studies. Unless otherwise stated, we use UCF101 dataset and sample clips of 16 frames
with 112x112 resolution, report top-1 accuracy and utilize R(2+1)D-18 [41] backbone for
all ablation experiments.
Contribution of Learning Objectives. As defined in Section 3.3, we combine self-supervised
objective (MAC-S) with proposed contrastive objective (MAC-C). The Top-1 accuracy re-
sults on UCF-101 for optimizing each objective separately and jointly are given in Table 1.
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Method Evaluation Pretrain Backbone Res. UCF101 HMDB51

MoCo [8] Linear K400 R(2+1)D-18 112x16 67.4 39.8
FAME[12] Linear K400 R(2+1)D-18 112x16 72.2 42.2
MAC-SC-2 Linear K400 R(2+1)D-18 112x16 73.6 43.1

Random Init. Finetune - R(2+1)D-18 112x16 71.2 35.6
Supervised Finetune K400 R(2+1)D-18 112x16 89.9 63.5

TT[27] Finetune UCF101 R(2+1)D-18 128x16 81.6 46.4
FAME[12] Finetune UCF101 I3D-22 112x16 81.2 52.6
CtP[44] Finetune UCF101 R(2+1)D-18 112x16 86.2 57.1
MAC-SC-4 Finetune UCF101 R(2+1)D-18 112x64 87.8 55.3
ASC-Net [24] Finetune K400 R3D-18 112x16 80.5 52.3
FAME[12] Finetune K400 R(2+1)D-18 112x16 84.8 53.5
CoCLR[19] Finetune K400 S3D 128x32 87.9 54.6
CtP[44] Finetune K400 R(2+1)D-18 112x16 88.4 61.7
MAC-SC-2 Finetune K400 R(2+1)D-18 112x16 87.1 57.0
MAC-SC-4 Finetune K400 R(2+1)D-18 112x64 90.8 58.5
TransRank[13] Finetune K400 R(2+1)D-18 112x64 90.7 64.2

BE [47] Finetune UCF101 R3D-34 224x16 83.4 53.7
STOR [56] Finetune K400 R2+1D-18 224x64 87.6 56.4
MotionFit[16] Finetune K400 S3D-G 224x64 90.1 50.6
ASC-Net [24] Finetune K400 S3D-G 224x64 90.8 60.5

CVRL [36] Finetune K400 R3D-50 224x32 92.2 66.7
BraVe [37] Finetune K400 R3D-50 224x64 93.7 72.0
ρBYOL [14] Finetune K400 R3D-50 224x16 95.5 73.6

Table 3: Comparison to prior and state-of-the-art methods for action recognition accuracy
on UCF101 and HMDB51 datasets. We report both finetuning (No freeze for encoder) and
linear probe (freeze encoder) results.

We also provide results of contrastive objective with only standard augmentations applied on
videos at top row as a baseline. We observe that using MAC augmentation together with ei-
ther self-supervised or contrastive objectives have gains nearly 12% over this baseline. More
importantly, when our model is optimized with both objectives (Equation 3), i.e. MAC-SC-2,
performance gain in accuracy increases another 3.3 points (from 81.5% to 84.8%). We con-
clude that both objectives operate cooperatively to complement each other in representation
space.

Impact of using multiple αs per clip. In MAC-n variant, we assign different multipliers for
distinct subclips of each clip as defined in Section 3.3. The results are shown in Table 2. We
observe that the increase in the number of αs also increases the resulting action recognition
performance in reasonable margin as long as there are enough frames for encoding. Key take-
away is that using multiple αs per clip enforces model to encode each subclip separately,
increasing variance of temporal representations.

To analyze this behavior further, we investigate whether this performance gain results
from a more challenging classification objective or treating the subclips separately. To un-
derstand this, we setup MAC-S-2 with k = 4 α values and assign two separate prediction
heads for each α instead of a single prediction head. This reduces the possible number of α

predictions from 16 to 4; a 2× 4-way classification instead of 16-way classification. It can
be seen from Table 2 that only %1.3 increase between MAC-SC-1 and MAC-SC-2 comes
from classification complexity. Embedding 2 subclips of 8 frames with same classification
complexity (MAC-SC-2 with 2 class heads) has %1.5 better than embedding 16 frames with
only a single α (MAC-SC-1). This implies that model learns to embed each half subclips
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Method Pretrain Dataset Accuracy

BE[47] Diving-48 58.3
TE[26] Diving-48 71.2
MAC-SC-2 Diving-48 72.3
BE[47] UCF-101 58.8
FAME[12] UCF-101 67.8
MAC-SC-2 UCF-101 69.2

Table 4: Comparison with state-of-the-art
methods for Diving-48 dataset. All meth-
ods use I3D on same input size, only [26]
use R2+1D-18.

UCF101 HMDB51
Method Top-1 Top-5 Top-1 Top-5

VCP[33] 18.6 33.6 7.6 24.4
PRP[55] 22.8 38.5 8.2 25.8
PaceP[45] 19.9 36.2 8.2 24.2
BE[47] - - 11.9 31.3
CtP[44] 23.4 40.9 11.4 30.3
MAC-SC-2 32.0 52.9 12.6 30.7

Table 5: Comparison with state-of-the-
art methods for video retrieval task on
UCF101 and HMDB51 datasets.

separately to predict their corresponding blending multipliers.

4.3 Comparison To Prior Works on Downstream Tasks
Action Recognition on UCF101 and HMDB51. Table 3 compares MAC with previous
state-of-the-art methods on action recognition task. We report top-1 accuracy results on
UCF101 and HMDB51 datasets using common R2+1D-18 backbone. For linear probe, we
add three fully connected layers and train only these layers while keeping the encoder frozen.
We try to include best results of prior works in most comparable settings.

MAC performs superior for both datasets; especially on UCF101 it is on par with Tran-
sRank [13], state-of-the-art method for transformation-recognition based methods. Although
both MAC and TransRank are successful at low resolution settings, TransRank uses less
frames than ours. However, TransRank utilizes a two-stream network for ensembling RGB
and RGBDiff modalities and it has to sample more clips per video with more than two times
longer pretraining (80 vs 200 epoch).

We also include results of recent state-of-the-art instance discrimination methods with
large scale experimental setups (shown in grey in Table 3) in terms of backbone, batch size,
resolution and sampled clips per input. Our MAC performs not far from CVRL [36](%1.5 on
UCF101) and comparable to BraVe [37] and ρBYOL [14] while being a much more simple
method. As an example, CVRL use large batches (CVRL:1024, ours:16), heavy backbones
(CVRL:50/152, ours:18 layers), more epochs (CVRL:800, ours:80) and higher resolution
(CVRL:224, ours:112).
Action Recognition on Diving48-v2 dataset. Diving48 [32] is a challenging dataset that
is specifically collected to be less biased against scene and appearance. Therefore, it favors
models that encode motion patterns instead of relying on static scene context. We report
Top-1 accuracy results in Table 4. Strong results on such a challenging dataset show that
proposed MAC framework indeed can learn and generalize to motion patterns.
Video Retrieval. We evaluate our method on video retrieval benchmarks of UCF101 and
HMDB51 in Table 5. We use R3D as backbone and UCF101 as pretraining dataset for the
video retrieval experiments. Although our learning paradigm prioritizes motion information
over scene information and the latter might be significantly useful in retrieval task, MAC still
outperforms some recent successful methods.

4.4 Do we really focus on motion?
To show whether our learning actually focus on foreground motion, we perform an experi-
ment by preparing a version of UCF101, that is more static and contains less temporal ac-
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(a) Raw Frame (b) Supervised (c) MAC Mask (d) Ours

Figure 4: GradCAM [38] of models at finetuning stage.

tivity, dubbed as Still-UCF. We use only one third of each video in UCF101 to decrease the
temporal variance, i.e. motion information. To make the sampled clip more static, we sample
only 4 frames and use each frame four times repetitively. As shown in Figure 3, we observe
that action recognition performances of K400 supervised model (↓ 4.1%) and MoCo pre-
trained model (↓ 3.2%) do not decrease as much as our MAC-SC-2 model (↓ 12.8%), which
suggests that our model is more dependent on motion features.

4.5 Visual Analysis.

Figure 3: Comparison of finetun-
ing results on UCF and Still-UCF
datasets.

To provide qualitative analysis and reinforce the
claims on motion-based learning, we present Grad-
CAM activation maps of our pretrained encoder to-
gether with raw frames and MAC masks from three
example videos in Figure 4.

We observe that our method is more focused
on action regions than the supervised ((b) in Figure
4) pretrained model. Notably, at the first row, our
method can attend running horses while supervised
method picks up clues from different regions such as
racetrack. Please refer to Supplementary Material for
more detailed visual and failure case analysis.

5 Conclusion
This paper introduces a novel mask-augmentation technique with corresponding self-supervised
and contrastive objectives for learning rich representations from videos. Our work is moti-
vated by background bias problem that might be mitigated by focusing more closely on mo-
tion information. In particular, our method aims to learn invariance to background while ex-
tracting distinctive features for temporal variants with the help of proposed mask-augmentation
tecnique and corresponding learning objectives. Experimental results show that our approach
achieves the state-of-the-art results in low resource settings and is comparable with methods
that require large-scale computing resources.
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