- for motion-related downstream tasks.

- transformation-recognition approach.

MAC: Mask-Augmentation for Motion-Aware Video Representation Learning Arif Akar, Ufuk Umut Senturk, Nazli Ikizler-Cinbis

ction Recognition Results				
	UCF101	HMDB51		
x16	81.6	46.4		
x16	86.2	57.1		
x64	87.8	55.3		
x16	84.8	52.3		
x16	88.4	61.7		
x38	87.9	54.6		
x16	87.1	57.0		
x64	90.8	58.5		
x64	90.7	64.2		
x64	93.7	72.0		
x16	95.5	73.6		

Method	Accuracy	
BE [47]	58.8	
FAME [12]	67.8	
Ours	69.2	

Experimental Results

Results for different choice of number of multipliers. 2 means input clip is split into two subclips and different multipliers are sampled and predicted for each subclip.

GradCAM Visualizations

Mask Extraction

- with less temporal activity to compare MAC with pretrained Supervised K400
- > Only one third of each video used
- Sampled only 4 frames and use each frame four times repetitively 50% 60% 70% 80%

Contributions

- \succ Simple and effective mask augmentation technique (MAC) based on frame differences.
- > A novel self-supervised objective, denoted as MAC-S, based on predicting the largely imperfect foreground masks.
- > A novel contrastive objective, denoted as MAC-C, describing positive pairs via MAC augmentation.
- Learning video representations with background-invariance and spatio-temporal equivariance by exploiting transformationrecognition paradigm.

# of multiplier	UCF101 Acc.
MAC-SC-1 (4-way clas.)	82
MAC-SC-2 (2 x 4-way clas.)	83.5
MAC-SC-2 (16-way clas.)	84.8
MAC-SC-4 (256-way clas.)	84.2
MAC-SC-4* (256-way clas.)	87.8

