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1 Overview

In this supplementary work, we provide additional ablation experiments and demonstrative
qualitative results for in-depth analysis of the proposed framework. We also provide source
codes that include all the models and configurations described in main paper to help future
research and conform with reproducibility principles. All experiments are done on UCF101
dataset with MAC-SC-2 model, using R(2+1)D backbone over 112 × 112 spatial resolution
and 16 input frames unless otherwise stated.

2 Mask Extraction Algorithm

A simple idea is to use a momentum structure to keep the track of background history.
Instead of taking a direct difference with current and previous frame, background is modeled
using a moving average of recent frames. Accounting a brief history of the previous frames
is an intuitively simple solution against illumination changes, ghosting effects or relative
background motion. We provide steps of mask extraction in Algorithm 1.

Algorithm 1 Foreground Mask Extraction
for each frame F of clip C:
I(t) = F;
diff = abs[BG(t-1) - I(t)]
FG_Mask(t) = threshold(diff, lambda)
BG(t) = (1-m) * I(t) + m * BG(t-1)

end
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3 Impact of Augmentations
To examine the effect of each data augmentation technique, we provide ablation results for
color jitter, greyscale and MAC in Table 2. We present results for MAC version with only
self-supervised objective (MAC-S-2 ) in order to observe possible degenerate solutions when
lack of spatial augmentations. Setting up MAC augmentation without any spatial augmen-
tation leads to degenarate representations that do not translate to downstream tasks well.
Applying color jitter increase gains for an additional 0.9% and grey scale augmentation
helps for another 2.3%. We conclude that all augmentation techniques improve model in-
variance for spatial transformations and prevent model from finding trivial solutions during
pretraining.

Figure 1: Pretraining Efficiency. Finetuning results on UCF-101 are given for each pre-
trained model. Models are picked at different epoch of self supervised pretraining stage. In
this case, models at epoch 5, 15, 30, 80 of pretraining stage are selected for finetuning.

4 Efficiency
We observe that our model is able to converge quite fast, and only a few epochs of pretrain-
ing is enough for superior transfer learning performance. To demonstrate this, we pretrain
our model on K400 dataset, and pick checkpoints from epoch 5, 15, 30 and 80. We then fine-
tune these models on UCF101 dataset to evaluate on action recognition and report results in
Figure 1. Our model which is pretrained for 5 epochs gives remarkable results, yielding a
boost up to ↑ 14% from random initialized model. We think that this is also a valuable as-
pect and the fast convergence at even early-phase pretraining models can provide efficiency
for downstream tasks. Given that ρBYOL achieves 84.6%[2] for UCF101 after 50 epochs
with heavy training, ours outperforms by solely utilizing 5 epochs (85%). That implies that
the proposed method might be a strong alternative against large-scale video representation
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learning methods that mostly benefits longer pretraining.

Method UCF101 HMDB51

PacePred [8] 66.3 32.2
VCOP[9] 72.4 30.9
VCP[5] 77.1 36.6
HDC[11] 76.8 40.0
MAC-SC-2 84.6 53.2

Table 1: R2+1D-10 [7] results which is far smaller backbone than R2+1D-18

We additionally demonstrate the effectiveness of our approach over a small-scale and
shallower backbone in Table 1. The proposed model pre-trained on UCF-101 outperforms
many existing models by a large margin for both datasets.

5 Impact of Source of Foreground Mask
In order to analyze the impact of foreground mask, we design a small-scale experiment.
Here, we utilize a subset of MiniKinetics (13k training, 1.7k test videos of 100 classes of
actions) dataset and compare the cases where the foreground mask is acquired via our simple
frame-differences based framework vs. human detections introduced in [1] that are extracted
with Mask R-CNN [4]. Namely, we pretrain our MAC model using foreground detections
extracted from off-the-shelf person detector instead of frame difference based masks and
compare it to our pretrained model. The results are given in Table 3. Surprisingly, frame-
difference based imperfect masks outperforms an off-the-shelf person detector by a margin.
We speculate that although the detector leverages prior knowledge, our instantly evolving
masks captures the moving foreground behavior better leading to better video.

6 Effect of Training Objective
We also experiment with using MSE(Mean Squared Error) objective instead of cross entropy
loss. In Table 2 MSE Regression refers to regressing preset α values, whereas MSE-n re-
gression refers to regressing uniformly sampled α values from (0,1]. As can be seen from
the results in Table 4, the performance of the model trained with MSE loss is rather inferior
than the one with cross-entropy objective. This might be due to the observation stated in

Augmentation Accuracy

MAC-S-2 76.6
MAC-S-2 + CJ (↑ 4.6%) 81.2
MAC-S-2 + CJ + GS (↑ 1.3%) 82.5

Table 2: The effect of additional augmen-
tations on UCF101 dataset. CJ stands for
Color Jitter, and GS is Grayscaling.

Source Accuracy

B.Box ([4]) 82.4
Ours 83.5

Table 3: Impact of Mask Source
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Method Backbone Accuracy

MAC-SC-2 R3D 78
MAC-SC-2 R(2+1)D-18 84.8
MAC-SC-4 R3D 86.4
MAC-SC-4 R(2+1)D-18 87.8

Table 5: Impact of Backbone

# of classes Accuracy

2 81.5
3 82.6
4 84.8
5 84.1
6 84.2

Table 6: Impact of # of α classes

m Accuracy

0.1 82.6
0.5 84.8
1 83.4

Table 7: Impact of momentum parameter

λ Accuracy

10 81.1
30 84.8
60 83.9

Table 8: Impact of threshold parameter

Colorful Image Colorization [10] that MSE loss is not robust to problems with multi-modal
nature, i.e. temporal variance of pixel color space. In unconstrained conditions, the optimal
case for MSE regression objective would reduce to mean of all possible values.

7 Effect of Mask Extraction Parameters

Loss Function Accuracy

MSE Regression Loss 81.5
MSE-n Regression Loss 82.0
Cross-Entropy Loss 84.8

Table 4: The impact of loss functions.

We demonstrate ablation experiments for
mask extraction parameters; threshold pa-
rameter λ and momentum parameter m that
is defined in Algorithm 1 for the edge
cases. The corresponding evaluations are
presented in Table 7 and Table 8. Recall
that obtaining perfectly realistic foreground
masks is not in the scope of this study. We
observe the impact of setting both parame-
ters at extreme values by simply comparing
the performance of downstream action recognition task. It should be noted that m = 0.1 con-
verges to pure frame difference while m = 1 corresponds to the case of calculating moving
average of previous frame differences. Similarly, λ = 10 is an extreme low threshold with
high response to differences and λ = 60 is a rather high threshold with low response to dif-
ferences. Without doing a thorough search in parameter space, we pick average values for
λ = 30 and m = 0.5 for the rest of the experiments.

8 Impact of granularity of α

Here, we present the impact of granularity of α for cases of k from {2,3,4,5,6}. There
are k different values that α can take and here we analyze the impact of this value of k.
We analyze cases where α is sampled from the list of values A = {(ai)k−1,1}, where (ai)
designates centers of clusters formed by splitting (0,1) into k−1 clusters uniformly, recalling
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that α = 1 is always retained to represent natural form of augmented clips. As can be seen
from Table 6, best performance is achieved when k = 4 that is slightly superior to k = 5 case.
When k = 3, the number of possible cases for classification objective becomes kn = 32 which
is a fairly easy task than for k = 4 (kn = 42).

9 Impact of Backbone
The impact of using different backbone models is given in Table 5. We experiment with
two different 3D CNN networks that are widely used in video representation learning. We
observe that R(2+1)D-18 [7] model yields significantly superior results than R3D-18 [3]
model. Both networks have the same number of parameters and depth, on the other hand,
R(2+1)D-18 model decomposes 3D convolutions into 2D spatial and 1D temporal convo-
lutions. Since our MAC relies on temporal information for motion augmentation and more
responsive to temporal occurrences, we conclude that performance gap between two back-
bones might have resulted from R(2+1)D-18 model’s handling temporal relations better than
R3D-18 model.

10 Qualitative Analysis
In this section, we demonstrate class activation maps (CAM) visualizations, corresponding
change masks and raw frames for samples both K400 supervised model and MAC-SC-2
model incorrectly classify and for cases only one of them incorrectly classifies.

Samples correctly classified by MAC but failed by K400 supervised model is given in
Figure 2. K400 supervised model apparently either loses focus from dynamic regions or pick
false clues from background. Surprisingly, our model can even pick motion in the mirror in
one particular case while K400 supervised model falsely attends background. These visual-
izations encourage that MAC is more robust to background clues while being more focused
on motion.

Samples correctly classified by K400 supervised model but failed by MAC is given in
Figure 3. It can be observed that although MAC fails due to losing its focus on dynamic
regions for some cases, it sometimes still fails even with a good focus on correct dynamic
regions. It is not straight forward to evaluate these failure cases with only qualitative analysis
but possible reasons might be related to inter-class variances between similar categories. On
the other hand, K400 supervised model seems to attend on background more, picking up
useful clues for some cases.

Failure cases both models incorrectly classify are demonstrated in Figure 4. Surprisingly,
for some cases both models seem to focus on correct regions by either attending on dynamic
parts or spatially related part of the scene but still fail. Although reasons of failure on both
sides are not evident, there might be incorrect context information (such as nunchucks in
front of a bridge at fourth row in Figure 4) or lack of distinguishing motion pattern (sixth row
in Figure 4). For others, lack of visual appearance information due to occlusion, illumination
variance and low resolution/bad quality imaging might be potential reasons of failure.
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(a) Raw Frame (b) Change Mask (c) Ours (d) Supervised

Figure 2: Examples for correctly classified cases by MAC-SC-2 and incorrectly classified
cases by Kinetics-400 supervised model from UCF101 dataset. GradCAM [6] activation
maps of models at finetuning stage. (a) raw video frames, (b) change masks, (c) GradCAM
maps of MAC-SC-2, and (d) GradCAM maps of K400 supervised pretrained model.
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(a) Raw Frame (b) Mask (c) Ours (d) Supervised

Figure 3: Examples for correctly classified cases by Kinetics-400 supervised model and
incorrectly classified cases by MAC-SC-2 from UCF101 dataset. GradCAM [6] activation
maps of models at finetuning stage. (a) raw video frames, (b) change masks, (c) GradCAM
maps of MAC-SC-2, and (d) GradCAM maps of K400 supervised pretrained model.
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(a) Raw Frame (b) Mask (c) Ours (d) Supervised

Figure 4: Examples for incorrectly classified cases by Kinetics-400 supervised model and
MAC-SC-2 from UCF101 dataset. GradCAM [6] activation maps of models at finetuning
stage. (a) raw video frames, (b) change masks, (c) GradCAM maps of MAC-SC-2, and (d)
GradCAM maps of K400 supervised pretrained model.
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