# Self-distillation and Uncertainty Boosting Self-supervised Monocular Depth Estimation

Hang Zhou, Sarah Taylor, David Greenwood, Michal Mackiewicz {hang.zhou, s.l.taylor, david.greenwood, m.mackiewicz}@uea.ac.uk University of East Anglia, Norwich, UK

Code and model available at <u>https://github.com/brandleyzhou/SUB-Depth</u>





#### **INTRODUCTION**

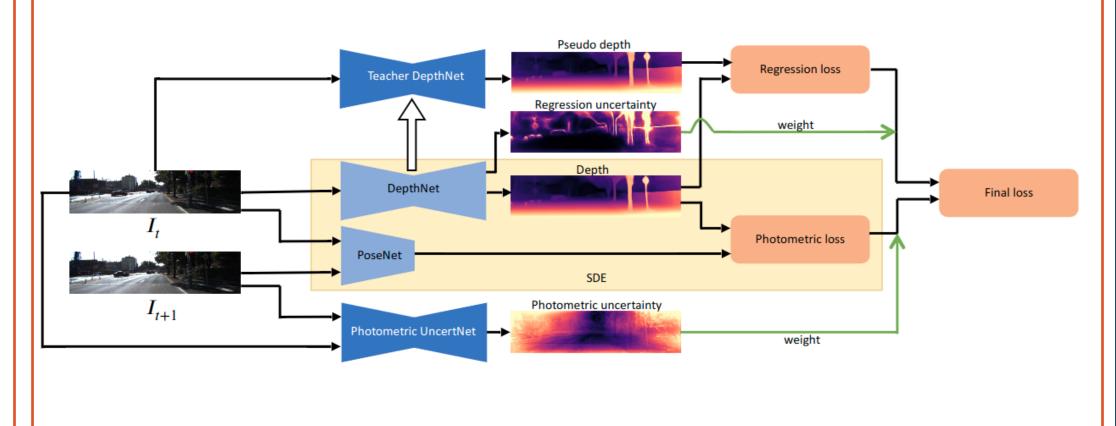
## <u>Goal:</u>

Develop a two-stage training scheme for self-supervised monocular depth estimation approaches.

#### **Contributions:**

- Introducing an auxiliary teacher-student objective for SDE training
- Utilizing heteroscedastic uncertainty modelling to select optimal settings.
- Conducting extensive experiments to show the generalization ability to existing SOTA models.

# 4. Overview of SUB-Depth training



#### **RESULTS**

### **1. Self-supervised monocular depth estimation (SDE)**

**METHODS** 

Avoiding acquisition of depth ground truth, SDE trains a depth network and a pose network simultaneously for an image reconstruction object. Given an intrinsic matrix K, it uses estimated depth d and camera pose Tchange to warp a source frame  $I_s$  to a target frame  $I_t$ . We validate SUB-Depth on three different SDE approaches: Monodepth2 [2], HR-depth [3] and DIFFNet [4] with KITTI benchmark.

| Quantitative comparison on KITTI Eigen split |         |        |       |          |            |            |            |  |  |  |  |
|----------------------------------------------|---------|--------|-------|----------|------------|------------|------------|--|--|--|--|
| Method                                       | Abs Rel | Sq Rel | RMSE  | RMSE log | $\delta_1$ | $\delta_2$ | $\delta_3$ |  |  |  |  |
| Monodepth2 [14]                              | 0.115   | 0.903  | 4.863 | 0.193    | 0.877      | 0.959      | 0.981      |  |  |  |  |
| + SUB-Depth                                  | 0.110   | 0.821  | 4.648 | 0.185    | 0.884      | 0.962      | 0.983      |  |  |  |  |
| Improvement                                  | 0.005   | 0.082  | 0.115 | 0.008    | 0.007      | 0.003      | 0.002      |  |  |  |  |
| HR-depth [34]                                | 0.109   | 0.792  | 4.632 | 0.185    | 0.884      | 0.962      | 0.983      |  |  |  |  |
| + SUB-Depth                                  | 0.106   | 0.770  | 4.545 | 0.182    | 0.888      | 0.963      | 0.983      |  |  |  |  |
| Improvement                                  | 0.003   | 0.022  | 0.087 | 0.003    | 0.004      | 0.001      | 0          |  |  |  |  |
| DIFFNet [49]                                 | 0.102   | 0.764  | 4.483 | 0.180    | 0.896      | 0.965      | 0.983      |  |  |  |  |
| + SUB-Depth                                  | 0.099   | 0.695  | 4.326 | 0.175    | 0.900      | 0.966      | 0.984      |  |  |  |  |
| Improvement                                  | 0.003   | 0.059  | 0.157 | 0.005    | 0.004      | 0.001      | 0.001      |  |  |  |  |

Weights are optimized by the colour differences between warped  $I_{s'}$ and  $I_t$  via photometric loss  $L_P$  and an edge-aware smoothness penalty term  $L_S$ :

$$L_{P} = \alpha \frac{1 - SSIM(I_{s'}, I_{t})}{2} + \alpha |I_{t} - I_{s'}|$$
$$L_{S} = \left| \frac{\nabla d}{\partial x} \right| e^{-\left| \frac{\nabla I_{0}}{\partial x} \right|} + \left| \frac{\nabla d}{\partial y} \right| e^{-\left| \frac{\nabla I_{0}}{\partial y} \right|}$$

The final loss for this image reconstruction task:

$$l_{photometric} = L_P + \beta L_S$$

#### 2. <u>Self-distillation scheme:</u>

We introduce a teacher depth model T and let d from a student depth network to regress  $d_{pseudo} = T(I_t)$  using an L1 loss:

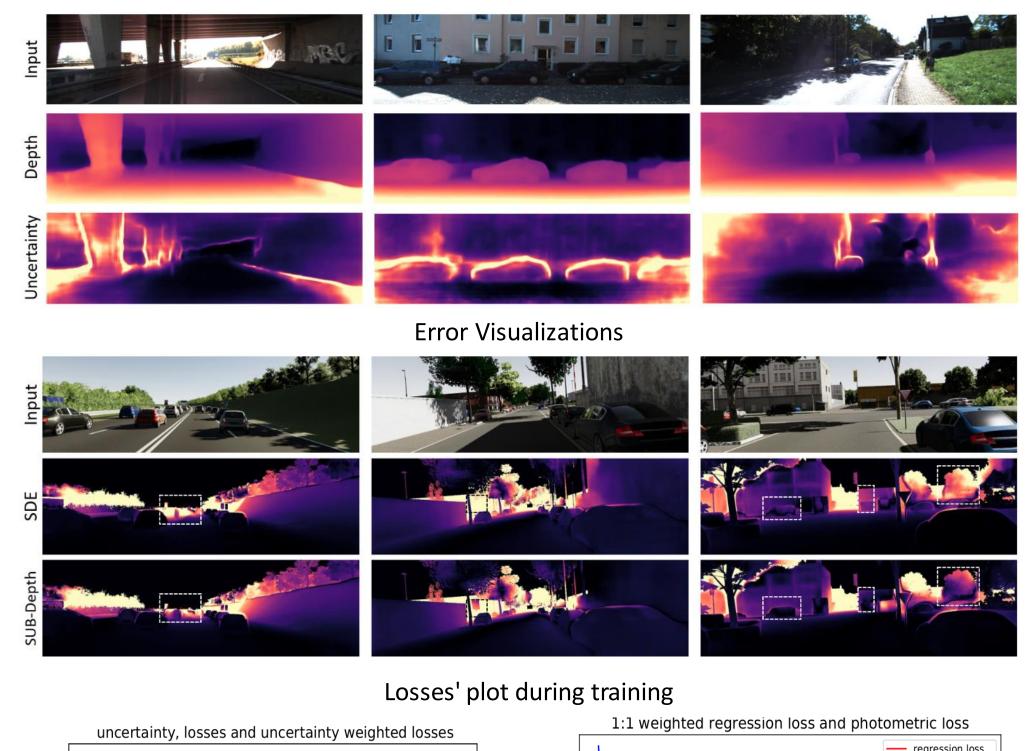
$$regression = |d - d_{pseudo}|$$

Then, we firstly combine  $l_{regression}$  with  $l_{photometric}$  using several manually-tuned settings:

 $l = w_{ph_0} * l_{photometric} + w_{reg} * l_{regression}$ And we find that it is hard to select the optimal weight setting, based on the table below.

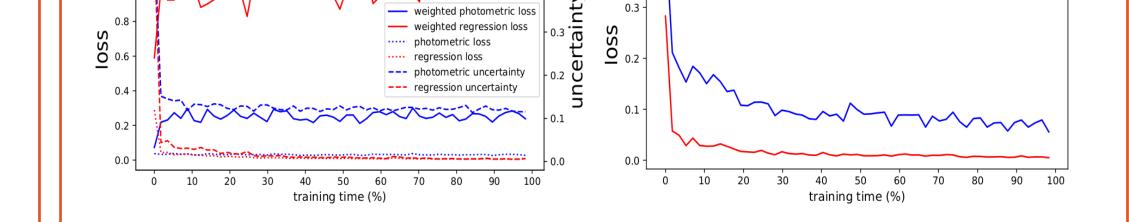
| Objective weights |                | Error metrics |        |       |          | Accuracy metrics |            |            |
|-------------------|----------------|---------------|--------|-------|----------|------------------|------------|------------|
| $\omega_{pho}$    | $\omega_{reg}$ | Rel Abs       | Sq Rel | RMSE  | RMSE log | $\delta_1$       | $\delta_2$ | $\delta_3$ |
| 0                 | 1              | 0.112         | 0.884  | 4.740 | 0.189    | 0.881            | 0.961      | 0.982      |
| 0.2               | 0.8            | <u>0.110</u>  | 0.855  | 4.724 | 0.188    | 0.881            | 0.961      | 0.982      |
| 0.4               | 0.6            | 0.112         | 0.866  | 4.736 | 0.189    | 0.881            | 0.961      | 0.982      |
| 0.5               | 0.5            | 0.112         | 0.888  | 4.766 | 0.189    | 0.882            | 0.961      | 0.981      |
| 0.6               | 0.4            | 0.113         | 0.876  | 4.774 | 0.189    | <u>0.884</u>     | 0.962      | 0.983      |
| 0.8               | 0.2            | 0.113         | 0.885  | 4.799 | 0.190    | 0.882            | 0.961      | 0.981      |
| 1                 | 0              | 0.115         | 0.903  | 4.863 | 0.193    | 0.877            | 0.959      | 0.981      |

#### **Output Visualizations**



#### 3. Task-dependent uncertainty formulation:

Following [1], we reformulate  $l_{photometric}$  and  $l_{regression}$  to  $l_{reconstruction}$  and  $l_{distillation}$  with their corresponding uncertainty:  $l_{reconstruction} = \frac{l_{photometric}}{\sigma_{pho}} + \log(\sigma_{pho})$   $l_{distillation} = \frac{l_{regrssion}}{\sigma_{reg}} + \log(\sigma_{reg})$ As a result, we use a combination of two losses above:  $l_{final} = l_{distillation} + l_{reconstruction}$ 



1.2

#### References

[1] Alex Kendall, Yarin Gal, and Roberto Cipolla. Multi-task learning using uncertainty to weigh losses for scene geometry and semantics. CVPR, 2018.
[2] Clément Godard, Oisin Mac Aodha, Michael Firman, and Gabriel Brostow. Digging into self-supervised monocular depth estimation. ICCV, 2019.
[3]Xiaoyang Lyu, Liang Liu, Mengmeng Wang, Xin Kong, Lina Liu, Yong Liu, Xinxin Chen, and Yi Yuan. Hr-depth: High resolution self-supervised monocular depth estimation. AAAI, 2021.

[4] Hang Zhou, David Greenwood, and Sarah Taylor. Self-supervised monocular depth estimation with internal feature fusion. BMVC, 2021.



photometric los