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Abstract

We propose TripleDNet (Disentangled Distilled Depth Network), a multi-objective,
distillation-based framework for purely self-supervised depth estimation. We add further
objectives to structure-from-motion based estimation to constrain the solution space and
to allow feature space disentanglement within an efficient and simple architecture. In
addition, we propose a knowledge distillation objective that supports depth estimation in
terms of scene context and structure. Surprisingly, we also found out that self-supervised
image representation learning frameworks for model initialization outperforms the su-
pervised counterparts. Experimental results show that proposed models trained purely
in a self-supervised fashion outperform the state-of-the-art models on the KITTI and
Make3D datasets compared to models utilizing ground truth segmentation maps. Codes
are available at https://github.com/ufukpage/TripleD.

1 Introduction
Monocular depth estimation is a fundamental problem in computer vision due to its impact
on 3D scene understanding and its critical role in practical applications including robotics,
health, and autonomous driving. Gathering ground truth labels for this task is a laborious
and noisy endeavor, since it requires pixelwise annotations. Recent works try to address this
problem by utilizing consecutive video frame information via joint learning of ego-motion
and depth prediction. Estimated relative camera transformation and depth maps are used to
warp the input frames onto the neighboring frames, which is central to the Structure-from-
Motion(SfM) approach [16].

Models relying on assumptions (constant illumination, static world) at the expense of
self-supervision based on SfM fail disastrously in some cases, especially in textureless ar-
eas. Recent approaches [11, 30] that are masking out stationary or occluded pixels ignore
the possibility that substantial signals could be lost, causing the training process to become
disrupted. This leads to incorrect depth estimations in those local regions. In order to allevi-
ate this issue, we approach the problem from an image representation learning (IRL) view
to model scene context and keep the gradients flowing during backpropagation. This context
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modeling helps the network to infer in a way that similar scenes would likely have similar
scene representations, hence similar depth estimations. Thus, for cases where the network
is not receiving gradient flowing from reprojection error, additional objectives modeling the
scene are expected to provide sufficient gradient flow.

We conjecture that mutual learning of different but related tasks is likely to model good
scene representations. One might think that using ground truth segmentation maps or any
other scene context prior is beneficial to improve depth estimation [2, 5, 40]. However, this
violates the principle of unsupervised learning, where any ground truth information should
be assumed to be non-existent. To avoid using any ground truth information, we incorporate
self-supervised image representation learning insight within the depth estimation framework.
This insight suggests that representations learnt by utilizing pretext objective via pseudo
labels should be suitable for various downstream tasks. For instance, to solve a colorization
problem, a neural network needs to solve part or patch level correspondence such that pixels
on the same semantic patch or part have similar colors. Even though the network does not
know the ground-truth semantic label of that patch or region, it has a grasp of integrity and
awareness of pixels in the same semantic area.

In the light of these insights, we propose TripleDNet (Disentangled Distilled Depth Net-
work) (and variants) to obtain refined context representations and consequently, depth es-
timations. In this framework, we couple the depth estimation with self-supervised pretext
tasks (such as autoencoding, colorization, and inpainting or masked autoencoding) to cap-
ture good semantics and to infer finer image details. We employ suitable self-supervised
tasks to distill knowledge via multi-objective training. Combining those objectives naively
would not perform best because the depth decoder might be enforced to decode unnecessary
scene properties in the entangled latent space. Moreover, more representative features can be
obtained by disentangling the scene as appearance and geometry factors[26] through those
pretext tasks. Therefore, we propose a framework in which objectives can be jointly opti-
mized thanks to disentangling features onto separate decoders. Both decoders are utilized to
take on depth estimation and pretext tasks. Consequently, the final model compensates men-
tioned side effects while estimating better depth maps, thanks to implicit modelling of scene
context that can reason about the relation between depth and latent factors of the scene. In
this context, we also investigate self-supervised IRL models [3, 6, 18] for encoder initializa-
tion instead of supervised pretraining on ImageNet [7] and demonstrate their effectiveness
over supervised models.

Overall, our contributions in this paper can be summarized as follows:
• We propose distillation and disentanglement mechanisms based on joint learning of

novel self-supervised pretext tasks and monocular depth estimation.
• To the best of our knowledge, this is the first work to introduce and evaluate self-

supervised IRL to self-supervised depth estimation in terms of unsupervised finetun-
ing, which extends the findings of respective studies.

• Experimental results on two benchmark datasets show that the proposed approach is
able to achieve state-of-the-art performance in monocular depth estimation in a fully
self-supervised fashion.

2 Related Work
2.1 Self Supervised Depth Estimation

Depth estimation is a highly ill-posed problem, especially in monocular settings. One of the
seminal works [12] exploits right-left consistency in the stereo camera configuration. Con-
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currently, another work [52] utilizes neighboring frames to constrain optimization, similar
to SfM. Monodepth2[11] method has been developed as a strong baseline that offers multi-
scale estimation, auto masking stationary pixels, and minimum projection loss. Following
these seminal approaches, many lines of works are later proposed to improve architecture
[14, 20, 50] and objectives[38, 39, 46], or enforce extra constraints [1, 32, 44, 49]. Another
line of studies[5, 15, 25, 27] employs semantic priors to strengthen scene representation,
producing better depth maps by fusing explicit semantic knowledge.

2.2 Knowledge Distillation on Depth Estimation

Knowledge distillation [13] is employed to have a better representation distilled from more
complex models to simpler ones. Pilzer et al. [36] propose self-consistency and self-
distillation based on stereo configuration. Subsequently, [40] jointly optimizes self-supervised
optical flow and depth estimation networks with the help of a pre-trained segmentation net-
work, which is later utilized for a self-distilled optical flow network. However, X-Distill[2]
proposes distillation from a pre-trained segmentation network by introducing depth to the
segmentation task quite similar to ours in terms of distillation. Key differences are that we
do not use any ground truth annotations and provide disentanglement structure. [51] present
another teacher depth network for distillation while regressing estimation uncertainty. In
this work, we distinctively exploit cost-free labels to create better representation space rather
than using a teacher network that produces depth maps which is still not good enough to be
the target label to supervise distillation loss.

2.3 Self Supervised Image Representation Learning

Self-supervised image representation learning is an unsupervised learning paradigm that at-
tempts to develop universal representations for various tasks using pretext or contrastive ob-
jectives. Since the denoising autoencoders [41], input data for unsupervised representation
learning has been masked or, in a broader sense, corrupted to reconstruct input or variants
of it. The first works to explore self-supervised learning (SSL) for image representation
learning (IRL) are [35] using inpainting pretext task, [48] jointly training networks to opti-
mize colorization[47] and greyscaling tasks, [34] solving jigsaw puzzle on image patches,
and [10] predicting angles of rotated images. Recently, [19, 28] investigate masked image
autoencoding for IRL based on masked language modelling [19, 33]. Furthermore, con-
trastive learning is becoming a building block for self-supervised learning frameworks due
to its power of transferability and accuracy on multiple downstream tasks. This paradigm is
primarily concerned with distinguishing instances from one another, optimizing contrastive
objectives. MoCo[18], SimCLR [6], and SWaV [3] are some of the leading approaches. In
this work, we also make use of them by initializing our models.

3 Method

Our proposed approach consists of two main components: i) pretext task distillation, where
the estimated depth map is fed to the network that solves the pretext task, and ii) disentan-
glement, where the depth map and appearance reconstruction are separated and depth map
is used as a conditional input through another neural network. Variants of our approach can
be grouped into two: one is distillation-only methods((M)D2G, (M)DC2G)(Section 3.1) uti-
lizing pretext layers and optimizing SSL losses based on pretext task, and second is TripleD
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Figure 1: Only distillation-based framework. Depth predictions are forwarded from depth
decoder to pretext decoder/layers via distillation connections indicated by red lines. Other
skip connections are omitted for brevity.

(Section 3.2) utilizing Pretext Decoder(PD) instead of pretext layers and optimizing autoen-
coder loss as SSL loss. All the modules are trained in an end-to-end fashion.

3.1 Pretext Tasks Distillation
To distill knowledge from self-supervised objectives and maintain gradient flow, we aim to
utilize the direct supervision signals easily extracted from the existing data. For this purpose,
we mainly use four pretext tasks to refine representation while backpropagating through
pretext network and depth network from self-supervised objective function. Specifically,
these pretext tasks are Depth-to-Grey Scale(D2G), Depth and Grey Scale-to-Color(DG2C),
Masked D2G(MD2G) and Masked DG2C(MD2C) tasks. Each task is trained and evalu-
ated separately. The overall process is shown in Figure 1. We construct these particu-
lar tasks instead of existing self-supervised representation learning tasks such as rotation
prediction[10] because of their suitability with pixel generation and the simplicity of the
ideas behind them. This is because our primary motivation is not to build a complex model,
but to demonstrate that even the simple elements of the IRL are sufficient to build a robust
depth estimation framework. Models are illustrated in Figure 2 and pink background of Fig-
ure 1. We intentionally use a 2-layer Convolutional Network as pretext layers in this section
which will be explained later. Details of one layer block in pretext layers are as follows:
Conv3× 3× 32Ð→BNÐ→ReLU, where Conv3× 3× 32 is 2D convolutional layer with # out
channel 32 and kernel size 3×3, BN is batch normalization. Same block is used twice. Third
block is a prediction layer that depends on the pretext task.

Depth-to-Greyscale (D2G): The first novel pretext task is Depth-to- Greyscale (D2G).
Our intuition is similar to the colorization task, where we assume that pixels in a local neigh-
borhood are likely to belong to the same object, hence, are likely to have similar depth
values. However, direct estimation of a color image from only depth estimation would lead
to poor performance, because two layers do not have enough capacity to solve that rather
complex task and underfit to that task. Therefore, instead of estimating colors, we estimate
the greyscale values of pixels which yields a much simpler computational task. The reason
we are using simple pretext layers similar to [2] is, high capacity pretext network would
weaken gradient flow to the depth network and distillation would not be done at the desired
level. Conv1×1×1 is employed as prediction head in pretext layers because only greyscale
version of RGB input is predicted and the following loss is employed for this task:

Ld2g(x) =
√

(PL(D(x))−GS(x))2+ε2 (1)

where D is depth CNN consisting of depth encoder and depth decoder, PL is 2-layered pretext
layer network and estimates greyscale version of RGB input X, and ε is a constant to avoid
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(a) (b)
Figure 2: Variants of Pretext Task Distillation(a) Depth-to-GreyScale task, self supervised
loss is calculated between L channel of RGB input and estimated greyscale image(b) Depth
and Grey Scale-to-Color task, input of pretext layers concatanetion of L channel of RGB
input and estimated depth map, loss is calculated over between a*b* channels of RGB input
and estimated a*b* channels.

zero loss which is 1e-3 for all the variants. GS function converts RGB input x to Lab space
and returns L channel as output.

Depth-Greyscale-to-Color (DG2C): Secondly, we employ the colorization task as yet
another pretext task. Instead of inputting only a color image, we concatenate depth map and
luminance L of the RGB input channel-wise for network input and estimate a∗b∗ channels
as in [47]. We think that injecting 2.5D information as extra input for the colorization task
might relax the optimization, since neighboring pixels are likely to have similar depth and
intensity values. Again, RGB input x is converted to Lab space. L is utilized as greyscale
input and ab are used for color targets. Conv1× 1× 2 is employed as prediction head in
pretext layers and the loss function is utilized as follows:

Ldg2c(x) =
√

(PL(D(x)⊕GS(x))−AB(x))2+ε2 (2)

where ⊕ is channel-wise concatenation operation, AB is a and b channel of RGB input. This
loss is similar to Equation 1. We do not use cross-entropy loss over quantized images as in
[47] to keep things simple.

Masked D2G (MD2G) and Masked DG2C (MD2C): Finally, we combine inpainting
insight based on prediction of masked regions to learn context representation with the D2G
and DG2C tasks. In the masked version of these tasks (denoted with MD2G and MD2C
respectively), we partially mask the input image by randomly zeroing out patch regions
with a predefined resolution, and make the network to predict masked regions as in [35].
The inpainting/masked autoencoder task is employed to generate a representation that must
understand the context of the surroundings of the missing region, and consequently, the entire
image to infer the context of the missing region. By defining masked versions of these tasks,
we also investigate whether combining those tasks improves depth estimation performance.

Following equation is employed as loss function for MD2G task:

Lmd2g(x) = M̂⊙
√

(PL((1−M̂)⊙D(x))−GS(x))2+ε2 (3)

where M̂ is a binary mask where masked pixels are 1, ⊙ is the pixel-wise product. Similarly,
loss function of MDG2C task is as follows:

Lmdg2c(x) = M̂⊙
√

(PL((1−M̂)⊙(D(x)⊕GS(x)))−AB(x))2+ε2 (4)

Note that, for masked versions of the tasks, predictions are ignored where mask pixels
are 0 while calculating loss as in [35] to concentrate loss on the prediction of masked regions
rather than autoencoding already visible regions. Final self-supervised/pretext task loss Lpt
is based on the selection of pretext task.
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(a) Seperate Encoder (b) Shared Encoder
Figure 3: Variants of TripleD. Red arrows indicate distillation connections that forward
multi-scale depth estimations to the pretext decoder. Blue arrows forward depth encoder
features to pretext encoder. Preprocess is computed based on pretext task. All fusion opera-
tions are done via channel-wise summation.

3.2 Disentangle via Pretext Task and Distill

We extend our approach in Section 3.1 with disentanglement and distillation via multiple
objectives. Our intuition is that the scene can be factored into geometry and appearance
components, obtained from the depth decoder and the appearance or pretext decoder, re-
spectively. This way, the depth decoder does not have to decode irrelevant information such
as color intensities. Following this intuition, we conjecture that we can reconstruct the in-
put image with features of both networks to form auto-encoding optimization. We use two
versions of this framework: i) using the same encoder and two decoders that are depth and
color/appearance/pretext, and ii) where separate encoders are used.

A separate encoder allows us to use different modalities for appearance encoders, such
as utilizing greyscale input and formulating colorization tasks with the help of depth esti-
mations. For the separate encoder case (Figure 3(a)), we forward depth encoder features
to separate or pretext encoder via skip connections. Simple summation between features of
depth encoder and pretext encoder is applied to combine features. We formalize three main
pretext tasks for separate encoder case: i) colorization, ii) inpainting and iii) autoencoding.
Following equation is employed as the loss function for colorization pretext task:

Lc(x) =
√

(DP(EP(GS(x)))−AB(x))2+ε2 (5)

where EP is pretext encoder, DP is pretext decoder shown in Figure 3. We formalize loss
functions for inpainting and autoencoding pretext tasks as follows:

Lmae(x) =M⊙
√

(DP(EP((1−M)⊙x))−x)2+ε2 (6)

Lae(x) =
√

(DP(EP(x))−x)2+ε2 (7)

A shared encoder case is shown in Figure 3(b), and reprojection loss is employed as
described in Section 3.3 to supervise depth estimation. In this figure, zd and za are separate
latent codes used for the disentanglement process. Notice that we make no guarantees about
full disentanglement in feature space. Our primary focus is the rough separation of features
utilized for separate tasks. We cannot change input x to form distinct pretext tasks such
as colorization and inpainting. Because changing input into something so much different
affects the depth estimation framework and adds an unnecessary burden to the already ill-
posed problem. Therefore, we only employ autoencoding optimization for shared encoder
case similar to Equation 7. Final Lpt is based on the encoder case or selection of pretext task.
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3.3 Self Supervised Depth Estimation
To supervise the depth estimation framework, we also utilize video frames to form reprojec-
tion consistency. We use the input frame It for depth network and obtain the depth estimation
Dt = µθ (It) where µ is the depth network with parameters θ and use neighboring frame Is
as extra input for relative pose estimation TtÐ→s = δγ(It ,Is) where δ is pose network with
parameters γ , following [11]. Consequently, geometric warping is modelled as follows;

IsÐ→t = Is⟨pro j(Dt ,TtÐ→s,K)⟩ (8)

where K is the camera intrinsic matrix, pro j is the depth coordinate projection operator, and
⟨⋅⟩ is the 2D sampling operator. We can formulate reprojection objective loss Lrp as follows:

Lrp(It ,IsÐ→t) =ψ ∗Lpw(It ,IsÐ→t)+λ ∗
1−SSIM(It ,IsÐ→t)

2
(9)

where SSIM is structural similarity index, Lpw is pixel-wise loss defined in Equation 10, λ

and ψ are scale parameters controlling contribution of losses.

Lpw(x,y) =
√

(x−y)2+ε2 (10)

We also utilize feature-metric loss L f m as:

L f m(Ft ,FsÐ→t) = Lpw(Ft ,FsÐ→t) (11)

where Ft is encoder feature of It and FsÐ→t is warped version of Fs which is feature of Is
computed in a fashion similar to Equation 8. This loss is based on [38].

Following these partial loss definitions, total loss is defined as

Ltotal = Lrp+α ∗Lpt +β ∗L f m (12)

where α and β are weight hyper-parameters adjusting effects of Lpt and L f m losses. Note
that multi-scale depth estimation, auto-masking stationary pixels, edge-aware loss and min-
imum projection loss are employed as presented in [11].

4 Experiments
4.1 Datasets
We use Eigen split[8] of KITTI dataset as depth evaluation benchmark. We utilize KITTI raw
data[9] for training which consists of 39810 training, 4424 validation, and 697 test images.
Besides, we experiment on the Make3D[29, 37] dataset consisting of 134 test images for
depth estimation to showcase the generalizability of the model trained on the KITTI dataset.
We follow the same evaluation protocol as in [11] for Make3D.

4.2 Implementation Details
Our models are trained on 4 Nvidia V100 with a total batch size of 12, learning rate 1e-4,
for 20 epochs. At epoch 10, the learning rate is decreased to 1e-5. We set β as 1e-3 and α as
5-e3 in Equation 12 empirically based on cross validation, and leave ψ = 0.15 and λ = 0.85
as previous works [38]. We use Adam [22] optimizer with no weight decay and default
parameters. We use color jittering (brightness=0.2, contrast=0.2, saturation=0.2, hue=0.1)
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and random vertical flip with 0.5 probability for input augmentations for depth encoder.
Following [11], three neighboring frames are utilized for training, depth of the middle frame
is predicted. Other frames are used for pose estimation. We utilize a shared encoder case for
TripleD as default.
Backbones: We use ResNet-50(RN50) [17] based encoder for our depth estimation task.
Pose Encoder is based on ResNet-18(RN18) accepts 640×192 as input resolution as shown
in [38]. We use decoders similar to [11]. For all tasks utilizing masks, the input is masked
by 16 patches with a 16×16 resolution quite similar to [35]. We use shared encoder case
discussed in Section 3.2 as default. We use RN18 provided by [24] distilling from RN50
since no results of RN18 from respective papers. FeatDepth [38] initializes the feature-
metric encoder with the supervised RN50 for L f m. Therefore, to avoid any form of supervi-
sion, we initialize all encoders with SWaV[3] unless stated otherwise. Other than SWaV[3],
SimCLR[6] and MoCo[18] trained on ImageNet[7] dataset are investigated for encoder ini-
tialization. Please refer to Supplementary Material for ablation study on the feature-metric
structure and encoder model initialization.
Evaluation: Estimated depth maps are capped to 80m, and median scaling is applied to
depth estimations as a common practice [52].

4.3 Monocular Depth Estimation Results
We first compare our proposed method and its variants to existing SoTA methods in the liter-
ature and the corresponding results are given in Table 1. In this table, D2G, DG2C, MD2C,
MDG2C corresponds to the singular pretext task distillations, whereas TripleDNet corre-
sponds to the overall framework that includes distillation and disentanglement. Our baseline
method is FeatDepth where the α = 0 in Equation 12. We outperform our baseline for 6 out
of 7 metrics with large margin. Proposed models achieve state-of-the-art results for various
metrics, although many methods use semantic ground truth knowledge in some form and/or
initialized with supervised pretraining. Although, DIFFNet performs relatively well, its en-
coder architecture is based on attention modules and HRNet[43] which explicitly utilizes
built-in semantic knowledge for semantic segmentation. Our aim is not to build new ar-
chitecture to improve representation, yet to construct a compact self-supervised framework.
Our distillation-only models((M)D2G, (M)DG2C) also perform nicely and demonstrate that
semantic knowledge extracted by ground truth labels is somewhat redundant. Generally
speaking, masked versions of the D2G and DG2C performs worse than unmasked ones, this
implies that the whole image is important for pixel-wise tasks as discussed in [47]. In Table
1, we also show that initializing model with supervised pretraining (TripleD(sup.)) performs
worse than TripleD with SWaV initialization. The reason may be due to the inherent bias
driven by the ground truth labels, complicating transferring knowledge from one task to a
very different one.

Some methods that have RN18 backbones utilize semantic segmentation ground-truth
which is direct supervision that does not need huge models. The most recent and successful
related work are the ones with RN50 in Table 1. Besides, PackNet[14] is a network with
∼128M parameters while our depth network have ∼35M parameters. The absolute differ-
ences indeed appear to be small, however, performance gains can be observed more clearly
in terms of ratios, e.g. 10.9% increase in AbsRel and 22% in SqRel between ours and the
Monodepth2[11]. Table 3 also presents consistent ablation results. We note that δ1 and δ2
are more indicative metrics than δ3 since δ3 has a higher threshold (∼1.95).

Table 2 demonstrates the generalizability of our approach to another dataset, namely
Make3D. We observe that the proposed method outperforms current state-of-the-art methods
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Lower is better Higher is better
Method Superv. Encoder Res. ↓ Abs Rel ↓ Sq Rel ↓ RMSE ↓ RMSElog ↑ δ1 ↑ δ2 ↑ δ3

Wang et al.[45] M RN18 640x192 0.109 0.779 4.641 0.186 0.883 0.962 0.982
DDV[20] M RN101 640x192 0.106 0.861 4.699 0.185 0.889 0.962 0.982

Jung et al. [21] M+Sem RN50 640x192 0.102 0.675 4.393 0.178 0.893 0.966 0.984
D2G M RN50 640x192 0.108 0.738 4.639 0.185 0.882 0.963 0.983

DG2C M RN50 640x192 0.107 0.742 4.607 0.183 0.886 0.964 0.983
TripleD M RN50 640x192 0.104 0.714 4.509 0.181 0.890 0.964 0.984

Monodepth2[11] M RN50 1024x320 0.110 0.831 4.642 0.187 0.883 0.962 0.982
SGDepth[23] M+Sem RN18 1280x384 0.107 0.768 4.468 0.186 0.891 0.963 0.982
PackNet[14] M PackNet 1280x380 0.107 0.802 4.538 0.186 0.889 0.962 0.981
HRDepth[31] M RN18 1024x320 0.106 0.755 4.472 0.181 0.892 0.966 0.984
FeatDepth[38] M RN50 1024x320 0.104 0.729 4.481 0.179 0.893 0.965 0.987

CamLessMD[4] M RN50 1024x320 0.102 0.723 4.374 0.178 0.898 0.966 0.983
Jung et al. [21] M+Sem RN18 1024x320 0.102 0.687 4.366 0.178 0.895 0.967 0.984

X-Distill[2] M+Sem RN50 1024x320 0.102 0.698 4.439 0.180 0.895 0.965 0.983
SGRL[15] M+Sem PackNet 1024x320 0.100 0.761 4.270 0.175 0.902 0.965 0.982

DIFFNet [50] M HRNet 1024x320 0.097 0.722 4.345 0.174 0.907 0.967 0.984
TripleD (sup.) M RN50 1024x320 0.103 0.726 4.437 0.180 0.896 0.965 0.983

DG2C M RN50 1024x320 0.099 0.668 4.448 0.176 0.893 0.966 0.985
D2G M RN50 1024x320 0.098 0.676 4.307 0.175 0.903 0.967 0.984

MD2C M RN50 1024x320 0.099 0.652 4.338 0.174 0.898 0.968 0.984
MDG2C M RN50 1024x320 0.099 0.651 4.336 0.173 0.897 0.967 0.985
TripleD M RN50 1024x320 0.099 0.648 4.296 0.173 0.901 0.968 0.985

Table 1: Comparison with state-of-the-art methods for depth estimation on Eigen Split of
KITTI dataset. M stands for Monocular video supervision and Sem stands for semantic
segmentation related supervision. Bold refers to best one and underline refers to second
best. (sup.) indicates model initialization with supervised pretraining on ImageNet.

in this dataset. The main reason, we believe, is that utilizing unsupervised tasks in our
framework improves the representation capability of the internal structure of the scenes.

Method Superv. ↓ Abs Rel ↓ Sq Rel ↓ RMSE ↓ RMSElog

Monodepth [12] S 0.544 10.94 11.760 0.193
SfMLearner [52] M 0.383 5.321 10.470 0.478

DDVO [42] M 0.387 4.720 8.090 0.204
Monodepth2[11] M 0.322 3.589 7.417 0.163

X-Distill[2] M 0.308 3.122 7.015 0.158
TripleD M 0.303 3.032 6.907 0.155

Table 2: Comparison with state-of-the-art
methods for depth estimation on Make3D.

Qualitative Analysis: In the Figure 4,
we show depth maps that are consistently
pleasing since our model can distinguish
object boundaries better. This can also re-
veal the usefulness of pretext tasks for se-
mantic segmentation that is also expected to
be correlated with depth estimation. How-
ever, FeatDepth tends to mix up objects
which are projected on neighboring pixels.
We find that the proposed model generally
produces sharper depth maps with finer details of thin objects such as trees.
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Figure 4: Qualitative Results. Green areas indicate better depth estimation.
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4.4 Ablation Study
In this section (and Supplementary Material), we analyze the impact of our design decisions.
Input resolution is set to 1024×320, and Eigen split of KITTI is used.

Method ↓ Abs Rel ↓ Sq Rel ↓ RMSE ↓ RMSElog ↑ δ1 ↑ δ2 ↑ δ3 # params

TripleD + full disentangle 0.101 0.745 4.512 0.178 0.899 0.966 0.983 8.8M
TripleD + last 3-layer disentangle 0.101 0.635 4.337 0.176 0.893 0.968 0.985 8.9M
TripleD + last layer disentangle 0.099 0.648 4.296 0.173 0.901 0.968 0.985 9.1M

TripleD + no disentangle 0.099 0.665 4.336 0.173 0.899 0.968 0.985 9.6M

Table 3: Ablation study on encoder layer disentangle. # of params refer to # of decoder
parameters. Bold refers to best one.

Layer Disentanglement: Disentanglement is made by using half of the channel features of
the encoder, where those features are then forwarded through a skip connection to both of
the decoders. Even with the full disentanglement, the decoder performs considerably fine
as shown in Table 3. As expected, decreasing the number of separated features increases
performance. It is worth noting that a model with no disentanglement performs worse than
a model with 1-layer disentanglement, confirming our intuition that separating feature space
according to task is likely to aid representation learning. Furthermore, one can see that # of
parameters are reduced as disentangled features are increased. Even if we use an RN50 as
encoder, our # of parameters (8.5M) get closer to that of [11] which uses RN18 as encoder.

Method ↓ Abs Rel ↓ Sq Rel ↓ RMSE ↓ RMSElog ↑ δ1 ↑ δ2 ↑ δ3

Baseline + No Dist. Connection 0.101 0.665 4.431 0.178 0.893 0.966 0.985
Baseline + last layer Dist. Connection 0.100 0.658 4.388 0.176 0.898 0.967 0.985
Baseline + first layer Dist. Connection 0.100 0.657 4.340 0.175 0.899 0.967 0.984

Baseline + Full Dist. Connection 0.099 0.648 4.296 0.173 0.901 0.968 0.985
Baseline + Full Dist. + Encoder Skip Conn. 0.098 0.667 4.294 0.174 0.903 0.968 0.984

Table 4: Ablation study on distillation connection from depth decoder to appearance decoder.
Bold refers to best one.

Distillation Connection: Table 4 analyzes the effect of distillation connections and demon-
strates that it boosts performance in each metric. An important aspect is that adding skip
connections from the pretext decoder to the shared encoder increases performance. That
might sound counter-intuitive to our claim on depth decoder distillation. However, increas-
ing layer size might have an undesired effect on parameter updates, since gradients start to
weaken before reaching early layers. Direct skip connections to the encoder from the pretext
decoder solve that problem. However, we should note that adding more connections leads
towards a more multi-objective approach rather than a distillation-based method.

5 Conclusions
We demonstrate the power of a fully self-supervised framework and propose methods to im-
prove self-supervised monocular depth estimation, shed light on important aspects of self-
supervised depth estimation and impact of IRL on depth estimation. Results are promising
and the proposed TripleDNet model that is purely trained in a self-supervised fashion even
outperforms prior works that rely on ground truth annotations. We believe that fully unsu-
pervised depth estimation framework is an attractive direction to explore in order to develop
robust and generalized algorithms.
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