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1 Overview

In Supplementary Material, we provide more insights into the proposed method with ex-
tended experiments. For all experiments input resolution is set to 1024x320, and Eigen
split[4] of KITTI[5] results are reported. Imagenet[3] is utilized as pretraining dataset for
SWaV[1], SimCLR[2], MoCo[6] and supervised case. We use a share encoder case and all
encoders are initialized with SwAV unless stated otherwise.

2 Quantitative Metrics

Common metrics are used defined below, which compute the error between estimated depth
value d̂ from a set of D̂ consisting of all predicted depth values of an image and ground truth
d value. Lower is the better since those are error metrics.
Absolute Relative Error(Abs Rel): 1

|D̂| ∑d̂∈D̂
|d−d̂|

d

Squared Relative Error(Sq Rel): 1
|D̂| ∑d̂∈D̂

||d−d̂||2
d

Root Mean Squared Error(RMSE):
√

1
|D̂| ∑d̂∈D̂ ||d − d̂||2

log of RMSE (RMSElog):
√

1
|D̂| ∑d̂∈D̂ ||logd − logd̂||2

Below metric computes the ratio between pixels that are in a range defined by t from 1.
Higher is better for those metrics since it somewhat classifies pixels.

δt : 1
|D̂| |{d̂ ∈ D̂|max( d

d̂
, d

d̂
)}< 1.25t | x 100%
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Figure 1: Qualitative Results. Green boxes indicate better depth estimation.

3 Self-Supervised Objective Selection
For the only-pretext task case, self-supervised objective is picked as follows:

Lpt =


Ld2g if task = D2G
Ldg2c if task = DG2C
Lmd2g if task = MD2G
Lmdg2c if task = MDG2C

(1)

where Ld2g, Ldg2c, Lmd2g, Lmdg2c are defined in main paper. For the TripleD case, self-
supervised objective is:

Lpt =


Lc if task = colorization & encoder = separate
Lmae if task = inpainting & encoder = separate
Lae if task = autoencoding & encoder = separate
Lsae if task = autoencoding & encoder = shared

(2)

where Lc, Lmae, Lae, Lsae are defined in main paper.

4 Different Objectives For Separate Encoder
Using a separate/pretext encoder for pretext tasks gives us the flexibility to change objective
functions rather than autoencoding shown in Figure 2. For the shared encoder case, we could
also apply the inpainting task end-to-end; however, using partially masked input for depth
estimation would add unnecessary complexity to an ill-posed problem. Adding an extra
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Figure 2: Separate Encoder Case for TripleD. Red arrows indicate distillation connections
that forward multi-scale depth estimations to the pretext decoder. Blue arrows forward depth
encoder features to pretext encoder. All fusion operations are done via channel-wise sum-
mation.

Method Pretext Objective ↓ Abs Rel ↓ Sq Rel ↓ RMSE ↓ RMSElog ↑ δ1 ↑ δ2 ↑ δ3

Separate Encoder Autoencoding 0.103 0.682 4.324 0.175 0.896 0.968 0.985
Separate Encoder Inpainting 0.101 0.656 4.407 0.178 0.893 0.966 0.984
Separate Encoder Colorization 0.099 0.657 4.341 0.175 0.902 0.968 0.984
Shared Encoder Autoencoding 0.099 0.648 4.296 0.173 0.901 0.968 0.985

Table 1: Ablation study on separate encoder with different objectives.

encoder decreases performance as expected in Table 1. It removes a burden out from the
depth encoder to itself to solve pretext tasks, and disrupts the distillation and disentanglement
mechanism. Hence, colorization task performs better than others in separate encoder, since
it utilizes whole image instead of partially masked one.

5 Depth Encoder Initialization

Method Shared Encoder Init ↓ Abs Rel ↓ Sq Rel ↓ RMSE ↓ RMSElog ↑ δ1 ↑ δ2 ↑ δ3

FeatDepth Supervised 0.104 0.725 4.485 0.179 0.894 0.964 0.987
FeatDepth SwAV 0.104 0.729 4.481 0.179 0.893 0.965 0.987

TripleD - 0.120 0.881 4.913 0.199 0.859 0.954 0.980
TripleD Supervised 0.103 0.726 4.437 0.180 0.896 0.965 0.983
TripleD MoCo 0.103 0.735 4.482 0.178 0.899 0.965 0.984
TripleD SimCLR 0.101 0.695 4.435 0.178 0.894 0.966 0.984
TripleD SwAV 0.099 0.648 4.296 0.173 0.901 0.968 0.985

Table 2: Ablation study on model initialization.

Transfer learning is currently one of the primary practices in machine learning, shortens
training time for various tasks. Thus far, supervised trained models are utilized for encoder
initialization in self-supervised depth estimation. However, trained models by ground truth
supervision have so much bias driven by the labels and complicate transferring knowledge
from one task to a very different one. Thus we change the model from supervised to unsu-
pervised for the task at hand. We initialize both the depth and pose encoder with the same
unsupervised method specified in Table 2 and use feature metric loss using model initial-
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ized with SwAV. Note that the architecture of the depth encoder is ResNet-50, and the pose
encoder is ResNet-18. Initialization with any method is a huge performance boost as ex-
pected. In Table 2, SwAV outperforms other methods by a large margin as it outperforms in
the image classification task. Furthermore, we test SwAV initialization on FeatDepth, which
reveals that it does not necessarily improve FeatDepth’s performance on each metric.

6 Feature-Metric Loss

We also utilize feature-metric loss L f m presented by FeatDepth[8] to analyze effect on our
structure and image representation learning(IRL) perspective. As [8] propose, separate fea-
ture encoder is trained with image reconstruction Lrec, discriminative Ldis in Equation 3.
and convergent Lcvt loss in Equation 4.

Ldis =−∑
p

e|▽
1I(p)|1 |▽1

φ(p)|1 (3)

Lcvt = ∑
p
|▽2

φ(p)|1 (4)

where ▽1I(p) is image gradient with respect to pixel p, ▽1φ(p) is feature gradient with
respect to pixel p, ▽2φ(p) is second order feature gradient and φ is feature encoder.

Then, neighboring images are fed to this encoder, and obtained feature maps are warped
to compute reprojection error in feature space. However, this feature encoder is initialized
with a model trained on ImageNet ground truth supervision. Thus, we initialize this encoder
with self-supervised IRL models, and further, we replace Lrec with masked image recon-
struction Lmask−rec. This loss computed as follows;

Lmask−rec(x) = M̂⊙
√
(x−F((1− M̂)⊙ x))2 + ε2 (5)

where M̂ is a binary mask where masked pixels are 1, ⊙ is the pixel-wise product, x
is the input image, F is the convolutional neural network consisting of decoder and feature
encoder φ , and ε is a constant to avoid zero loss which is 1e-3. This loss is used for all cases
utilizing masks in this study. When we do not use a mask, for instance for D2G or DG2C
task, we utilize similar following pixel-wise loss;

Lpw(x,y) =
√
(x− y)2 + ε2 (6)

where y is the estimation based on the task such as any pretext or autoencoding.
In Table 3, Lmask−rec increases(or does not change) performance of different initializa-

tions consistently. Surprisingly, L f m is not necessary for encoder initialized with Even if we
change feature encoder initialization with a supervised or SimCLR while keeping shared en-
coder initialization as SwAV, it does not have a negative impact. That implies representation
capability of SwAV initialization is best for our framework. However, L f m boosts perfor-
mance so much for other initializations. Nevertheless, we demonstrate that unsupervised
methods can replace supervised models for model initialization and loss on representation
space[9] somewhat similar to perceptual loss [7].
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Shared Encoder Init Feature Encoder Init. L f m Lmask−rec ↓ Abs Rel ↓ Sq Rel ↓ RMSE ↓ RMSElog ↑ δ1 ↑ δ2 ↑ δ3

Supervised - 0.106 0.755 4.499 0.187 0.892 0.964 0.983
Supervised Supervised ✓ 0.103 0.736 4.443 0.180 0.896 0.965 0.983
Supervised Supervised ✓ ✓ 0.103 0.726 4.437 0.180 0.896 0.965 0.984

MoCo - 0.105 0.752 4.483 0.178 0.899 0.965 0.982
MoCo MoCo ✓ 0.103 0.748 4.489 0.182 0.898 0.964 0.984
MoCo MoCo ✓ ✓ 0.103 0.736 4.486 0.177 0.899 0.964 0.984

SimCLR - 0.103 0.703 4.451 0.179 0.895 0.898 0.984
SimCLR SimCLR ✓ 0.101 0.700 4.445 0.176 0.894 0.966 0.984
SimCLR SimCLR ✓ ✓ 0.101 0.699 4.443 0.176 0.895 0.967 0.984
SwAV - 0.099 0.652 4.314 0.173 0.901 0.967 0.985
SwAV SwAV ✓ 0.099 0.655 4.300 0.173 0.901 0.967 0.985
SwAV SwAV ✓ ✓ 0.099 0.648 4.296 0.173 0.901 0.968 0.985
SwAV SimCLR ✓ ✓ 0.101 0.663 4.386 0.176 0.895 0.967 0.984
SwAV Supervised ✓ ✓ 0.099 0.667 4.361 0.175 0.900 0.968 0.984

Table 3: Ablation study for TripleD on feature metric loss initialization.

7 Qualitative Results

In Figure 1, we show extended results of our approach. Generally, the proposed model
completes objects such as gas tankers, and many-windowed walls or trucks while keeping
finer details and smoothens those objects realistically perspective-wise. For those examples,
other models produce unnecessary and false depth maps with large edges for even the flat
regions. Interestingly, our method distinctly generates a depth map by recognizing an object
in the low-light scene(2nd row, 3rd column).
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Figure 3: Failure cases. Green circles show failed regions.

However, our model fails for some cases shown in Figure 3. Depth values of people
are produced very well for many samples. However, overly vertical smoothing is a problem
in some cases because of bias based on the dataset of scenes consisting of sky and road
consistently. High-intensity and mirror reflections from a vehicle or building glass are the
most common failure cases which can be solved by further abstraction reasoning.

7.1 Disentanglement Effect on Pretext Task

We note that our primary focus is only a rough separation of feature space, we make no
guarantees about full disentanglement. We can demonstrate this rough disentanglement by
zeroing out the depth estimates in the input of pretext decoder during inference. For this
purpose, we carried out a small experiment, where we replace depth estimates with zeros for
pretext decoder. Since condition is done via summation, we prevent effect of estimated depth
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(a) W/o Depth Map (b) W/ Depth Map

Figure 4: Pretext Decoder outputs, scaled for visualization.

maps. An output as in Figure 4(a) that do not have any geometric detail, only random colors
are obtained. On the contrary, feeding estimated depth maps onto pretext decoder produces
an output as in Figure 4(b) that is quite similar to a depth map.
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