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Abstract

The in-domain performance of Binary Neural Networks (BNNs) has been signifi-
cantly boosted by recent research efforts. The effect of heavy compression to the gen-
eralization capability of BNNs, however, has not been explored. This paper shows that
binary compression degrades the generalization capability of BNNs, and addresses this
issue by optimizing the distribution of BNN parameters and activations. A novel BNN
training scheme is proposed to pursue a flat minimum for binary parameters through
optimizing latent real-valued weights. Our method also optimizes the distributions of
BNN activations to decrease the quantization errors caused by binarization. Extensive
experiments on three domain generalization datasets reveal that, jointly optimizing BNN
weights and activations substantially enhances the generalization capability, making our
BNN achieve the best performance among its competitors. Our method also exhibits
good compatibility to different network architectures, and performs well on general im-
age classification datasets like CIFAR-100 and ImageNet.

1 Introduction

Binary Neural Networks (BNNs) apply binary compression to weights and activations of
Floating point Neural Networks (FNNs) to save storage and computations. This compres-
sion strategy significantly accelerates the inference of FNNs, but leads to a fundamental
challenge: what negative effects would such heavy compression bring to FNNs?

An easily observed effect is the degraded performance of BNNs. Thanks to recent efforts
on binary network architectures and training strategies [26, 27], the in-domain performance
of BNNs has been significantly improved. For instance, trained and tested on the large-scale
ImageNet [6], BNNs have achieved similar image classification accuracy with FNNs [39].
However, the effects of binary compression to the out-of-domain performance of BNNs has
not been explored. We compare the out-of-domain and in-domain performance of BNNs
following setting from a recent work [3] on PACS [21]. Results show that, BNN achieves
comparable performance with FNNs when training and testing datasets are in the same do-
main, i.e., 93.6% VS. 93.7%. The performance gaps between BNN and FNN are substantially
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larger on out-of-domain test sets 69.2% VS. 79.0%. This could be attributed to the degraded
modeling capability for visual cues of BNNs, which makes them easier to get over-fitted to
training domain.

As Domain Generalization (DG) capability is important for computer vision tasks, this
paper aims to improve the DG capability of BNNs through enhancing their robustness to
domain shifts. Binary weights and activations limit the capabilities of modeling visual cues.
As proved in SWAD [3], seeking flat minima for CNN weights leads to better robustness
against the domain shift [12, 13, 18, 19]. Inspired by previous DG methods, the robustness to
domain shift can be optimized by finding flat minima in real-valued weights [3]. Also, BNN
binarizes real-valued activations before convolution. Smaller quantization error is helpful to
preserve the DG capability of real-valued activations. We therefore optimize distributions of
both weights and activations of BNNs.

There exist many methods [3] seeking flat minima for real-valued CNNs. However, they
can not be directly adopted to BNNs because of discrete values +1 in BNN weights. To
address this issue, we optimize a real-valued FNN to pursue a flat minimum, meanwhile
optimize weights in FNN to make each of them get close to +1 or -1. This FNN is hence
binarized as the BNN. This strategy effectively decreases quantization errors caused by bi-
narization, as well as boosts the DG capability of BNNs. For BNN activations, we optimize
their distributions by reducing the quantization error and producing even-distribution activa-
tions at different layers using an activation regularization loss.

Experiments are conducted using different network architectures on three widely used
DG datasets. Our method achieves substantially better performance than recent BNN meth-
ods like Bi-Real Net [24] and ReActNet [25] on PACS. We also applied recent DG methods
to BNNs. Experiments show, our method also outperforms recent DG methods such as
SWAD [3] and MixStyle[42]. Those experiments clearly reveal the validity of proposed
training strategies in enhancing DG capability of BNNs. To the best of our knowledge, this
is an early work studying the out-of-domain performance of BNNs. It reveals that, binary
compression is harmful to DG capability of neural networks. Besides, the DG capability
of BNNs can be effectively recovered through jointly optimizing a flat minimum in binary
parameters and applying an activation regularization loss on the BNN activations.

2 Related Work

This work is related to domain generalization and binary neural network optimization. This
section briefly reviews recent works in those two categories.

Domain generalization (DG) aims to enhance the out-of-domain performance on source
data typically composed of multiple related but distinct domains. Most DG methods [15,
22,28, 40] learn domain-invariant representations through aligning features of different do-
mains. For instance, MDA [15] learns a domain-invariant feature transformation to learn
distinctive features. Recently, meta-learning has been applied on DG [8, 9, 41]. Data Aug-
mentation is another category for learning domain-invariant models [29, 35, 42]. It regu-
larizes the model to avoid overfitting. MixStyle [42] increases source domains diversity by
mixing styles of source domains to boost the generalizability of the trained model. Some DG
methods leverage ensemble learning using multiple copies of the same model to boost the
performance of a single model [3, 10, 44]. By averaging the converged models, SWAD [3]
can find a flat minimum and suffers less from overfitting.

Binary Neural Networks (BNNs) enjoy high efficiency but suffer from degraded per-
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Figure 1: Illustration of baseline and expected distributions for weights and activations.

formance. Many works enhance the performance of BNNs by designing better network
structures [23, 24, 25, 27, 45]. For example, Bi-Real Net [24] and ReActNet [25] add real-
valued shortcuts with marginal computation overheads. Some other works focus on better
optimization for BNNs [2, 7, 26, 30, 31]. For example, XNOR-Net [31] introduces binary
convolutional kernels with scalars. XNOR-Net++ [2] further proposes to learn scalars with
three parameters corresponding to three dimensions of kernels. Liu et al. [26] analyze the
Adam training strategies and propose better solutions for optimizing BNNs. IR-Net [30]
proposes Libra-PB to minimize both quantization error and information loss simultaneously.
[7] proposes activation regularization loss to improve BNN training.

This work aims to boost the DG capability of BNNSs, thus differs with previous BNN
works in both motivation and methodologies. We optimize both distributions of weights
and activations in BNNSs to achieve better DG. BONN [14] proposes to reduce quantization
error between latent weights and binarized weights. IR-Net [30] gets informative weights
and activations by balancing the distribution. Different from BONN and IR-Net, our method
optimizes the distribution of weights to find a flat minimum. Previous works [33] and [37]
also train latent weights as a separated real-valued network. Differently, we optimize the
real-valued network with parallel training to chase a flat minimum. Our experiments com-
pare with recent BNNs and DG methods. Experiment results show our method outperforms
existing BNNs and DG methods.

3 Proposed Methods

3.1 Overview

Given a BNN with N-layers, we denote binary weights and real-valued latent weights as
W ={w,}_, and W = {®,}"_,, respectively. D = {(Xm,Ym,dm)}}_, denotes a source
domain dataset with M images in K domains, where x,,,y, and d,, € {1 : K} denote the
image, label and domain index respectively. Target domain dataset with J images are denoted
as T={(x,y),d;)}}_, where d; = K+ 1. Our goal is to use data from D to train a compact
BNN model which can generalize well to an unseen domain T.

To enhance the domain generalization (DG) capability of BNNs, we optimize distribution
of both its weights and activations. A flat minimum in parameter space can absorb distur-
bance brought by domain shift and increase the DG capability of a network. We optimize
distributions of real-valued weights to find a flat minimum, meanwhile learn real-valued
weights close to +1/-1 as shown in Fig. 1 (a) to preserve the flat minimum in binarized
weights. Also, BNN activations may suffer from quantization errors during binarization.
Binarized activations should also be evenly distributed between -1 and +1 to enhance their
capability in encoding meaningful cues. We hence also propose a regularization loss on BNN
activations to pursue target distribution illustrated in Fig. 1 (b). The overall loss function £
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for network training can be denoted as
L=LB4BLF +aLl +yLh, (1)

where £B denotes the task specific loss calculated using binarized weights W. £F denotes
the task specific loss calculated using real-valued weights with disturbance to find a flat
minimum. £ is the gap loss to measure the distance between binarized weights W and real-
valued weights W. It is minimized to preserve the flat minima of W in binary weights. £4
denotes the activation regularization loss to optimize the distribution of activations. a, 3, ¥
are the weights for loss functions. The following parts present details of training procedure.

3.2 Baseline Method for BNN Optimization

We first revisit the forward propagation and training of BNNs with £B. Both activations and
weights at the n-th layer are first binarized by the sign function S(-)

A
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where OB is the binarized activations from OB and the superscript © denotes they are cal-
Hw"H' as @, [31]. s, is the
size of the weight tenser in the n-th layer. The n-th layer hence convolves 0B with @, and
outputs activation 0 1 after a BN layer, i.e.,

culated with binary weights. @, is binarized and normalized by

OASH = bn(Conv(w,,0%)). 3)

The derivative of the sign function S(-) is zero for most inputs, making it incompatible
with backward propagation. To end-to-end train the BNN, real-valued weights @, are hence
stored as latent weights for gradients accumulation. This training strategy is commonly
known as Straight-Through Estimator (STE) [17, 24, 27]. The network is trained with a task
specific loss £P calculated on outputs computed by binarized weights, i.e.,

1 M
M Z U(B(W;xmvdM)ayM)? @

where B(+;-,-) computes the BNN prediction with binary weights. U(+, -) is the loss function
computed with ground truth y. The above training objective is commonly used in baseline
methods. Following parts introduce our strategies to enhance the DG capability of BNN.

3.3 Flat Minima Optimization on BNN Weights

Many works apply random disturbances to CNN weights to seek flat minima [3]. It is difficult
to directly optimize the flat minima on BNNs in this way, because BNNs use binarized
weights for forward propagation. Therefore, small random disturbance A can not bring sign
flips for binarized weights W. Large disturbances A can not lead to a close neighborhood for
BNN weights. Instead of directly learning a flat minimum for W, we find the flat minima for
real-valued weights W, meanwhile minimize the differences between W and W.
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Figure 2: Illustration of the pipeline for our Binary Neural Network training.

We introduce a FNN having the identical structure with BNN. This FNN uses real-valued
weights and binarized activations for forward propagation. This network can be trained by
LF, a task specific loss over multiple source domains,

N 1 N
ﬁF(W) = M U(F(W§xm7dm)>ym)7 ©)

HM§

where F(+;-,-) computes the FNN prediction. A solution to a flat minimum can be found by
solving arg miny, [Zl:l (W) within a neighborhoods bounded by u, i.e.,

argminEE( V) = argmin max LF(W+A), (6)
W W lAllsp

where u defines a neighborhood of W. If LF(W + A) keeps small loss within the neighbor-
hood, there exists the local optimum within g-ball [3], which is regarded as a flat minimum.

The introduced FNN updates real-valued weights W for gradients accumulation and to
find a flat minimum. As shown in Fig. 2, the n-th block of the FNN takes 01; as inputs, where
the superscript I denotes the activation is convolved by real-valued weights. OS is binarized
as OF, then is convolved with real-valued weight @, plus random Gaussian disturbance A,
where the mean and variance of the disturbances are 0 and ||®,]|1/2s, respectively. The
above computations output an activation On RN

OF, | =bn(Conv(dy, +A,0h)), )

where, it = ||@,]||1/2s,, we apply A as a disturbance for W. The network is end-to-end
trained with task specific loss £F calculated on FNN outputs in similar way of Eq. (5).
After training convergence, the random disturbances would find a flat minimum for W.
As W is binarized as BNN weights, the distance between W and W should be minimized to
preserve the flat minima. Therefore, we propose £¢ as the measurement of the differences
between W and W.

L£9=Y |[(@n — @n)|2- ®)

Eq. 8 minimizes the differences between binarized and real-valued weights. It hence restricts
each of real-valued weights close to +1 or -1. This loss effectively decreases the quantization
errors caused by parameter binarization, hence preserves the flat minima learned for W and
makes the training stage more stable.
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3.4 Regularization on BNN Activations

BNN binarizes activations before convolution, which leads to quantization errors and consid-
erable information loss. To enhance the DG capability, BNN activations should be optimized
to decrease quantization error. Also, binary activations should be evenly distributed between
+1 and -1 to enhance their capability in encoding meaningful cues, as in Fig. 1 (b).

We denote a batch of real-valued activations of the n-th layer as:

On = 03,05, ..., 05, ©)

where R is the batch size. 6/ (p) is the p-th location of é’,, p =1 : B,. Regularization loss
for the n-th layer Eﬁ can be defined as (we omit , in Sec 3.4 to simplify the description),

LA=E+G, (10)

where E and G denote quantization error loss and even-distribution loss respectively.

Since the gradient approximation of STE clips the real-valued activations to [—1,+1],
we can decrease the quantization error of each d},(p) by just pushing it away from 0. So we
define the quantization error loss E as,

1 2
:T;

an

HM%

where an d/,(p) close to 0 leads to larger loss.

The even-distribution loss is applied to encode more meaningful cues at each ', (p). For
instance, an },(p) producing similar numbers of +1 and —1 on a large dataset denotes its
high entropy and good information encoding capability. To implement the even-distribution
loss, we compute the mean value of 0/, (p) at each location p over the training batch. Intu-
itively, this mean value close to 0 leads to a small loss value of G, i.e.,

R
Y () (12)
r=1

Therefore, the regularization loss applied to the n-th layer £ can be formulated as

R 1 R 1 P
Z +(z L)) =-5 L o*(p). (13)
=i =

£A

W\
HMw
w\

where o (p) computes variance at the p-th location over the training batch. Notice that,
minimizing the regularization loss equals to maximizing the variance at each location of the
activation over the training batch.

4 Experiments

4.1 Datasets and Implementation Details

We follow Domain Generalization (DG) works [43] to conduct experiments on three datasets
PACS [21], VLCS [11], and OfficeHome[34], respectively. For PACS and VLCS, we follow
the setting in [3, 16] to leave one domain as the target domain and regard the others as source
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Figure 3: (a) Performance with different o, B and 7. (b) performance with £4 applied on
different blocks. (c) Value of £4 on validation and test sets. Results are reported on PACS.
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Figure 4: Illustration of final weight distribution of models from baseline and our method.
More visualizations can be found in Supp. A.1.

domain. OfficeHome does not provide the validation set. We choose the model trained by
the last epoch for evaluation. Besides DG datasets, we further test our method on traditional
classification datasets including CIFAR-100 [20] and ImageNet [6].

We apply the proposed method to different BNNs including Bi-Real Net [24] and ReAct-
Net [25], respectively. We follow the training setting in a BNN work [26] and use pre-trained
model from ImageNet. Notice that, existing works [24, 25, 39] do not binarize the first con-
volutional layer, the last FC layer, nor the 1 X 1 convolution layers in network. We also
follow this setting. For domain generalization tasks, we first initialize the BNN weights pre-
trained on ImageNet [6] following [16]. For both network structures, we use the pre-trained
model from [25]. After that, we fine-tune the model with source datasets for 100 epochs.
The initial learning rate is set as le — 3 and decreases by 0.1 at epoch 80. Following [26],
we use Adam optimizer with weight decay set as 2e — 6. For CIFAR-100 and ImageNet, we
follow recent works [25] to use Bi-Real Net and the two-step training strategy.

4.2 Ablation Study

Analysis on loss weight o, 8 and y: The impacts of loss weights o, § and ¥ on the BNN
performance are summarized in Fig. 3 (a), where each curve is plotted by varying one pa-
rameter and fixing the other two. Large o helps to minimize the differences between real-
valued and binarized weights, hence boosts the performance. Too large @ makes the training
convergence difficult and degrades the performance. A reasonably large 8 makes £F more
important for BNN training, hence helps to seek the flat minima. Setting a larger 7 also gets
the best performance. We fix a, 8, yas 0.1, 0.001, and 0.001, respectively on other datasets,
where they generalize and perform well as shown in subsequent experiments.

Analysis on regularization loss: Each binary convolutional block outputs a real-valued
activation. Therefore, the activation regularization loss £4 can be applied on different blocks.
Our experiments show that, adding £4 at different blocks leads to different performance. We
conduct experiments on Bi-Real Net [24] consisting of 4 blocks. The first and the last layers
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Figure 5: Illustration of the sign flip rates (SF) of weights with turbulence of different Noise
Degree (ND) from O to 0.5. Smaller SF indicates the weights are more stable with turbulence.

Methods A C P S Mean
ResNet-18 [16]f 83.4 80.3 96.0 80.9 85.1
IR-Net [30] 70.4 72.4 87.8 73.5 76.0
ReCU [38] 70.5 73.1 87.0 71.2 75.45
Bi-Real Net [24] 69.2 72.6 86.7 70.6 74.8
+RSC [16] 65.1 715 85.2 67.2 72.3
+SWAD [3] 67.3 72.9 87.0 74.0 75.3
+MixStyle [42] 69.5 72.3 87.0 70.9 74.9
+MIRO [4] 69.9 72.9 87.3 71.2 75.3
+LA 69.6 72.9 88.9 74.7 76.5

+L6 + F 72.0 73.5 88.7 74.9 71.3
ours 72.4 73.7 89.8 75.5 77.8
ReActNet [25] 66.4 68.5 85.6 75.7 74.0
+£8 4 LF 723 729 90.4 742 71.5
ours 72.2 73.9 89.3 75.7 77.8

Table 1: Comparison on PACS, with P (Photo), A (Art-painting), C (Cartoon) and S (Sketch).

are preserved as real-valued in many BNNs methods [24, 25, 27] because they are more
important in ensuring a high performance. We apply £ to different blocks and summarize
the results in Fig. 3 (b). It is clear that, applying £ to the first and the last binarized block
brings steady performance improvement over the baseline. Applying £4 on both block1&4
further boosts the performance. In following experiments, we apply £4 on the first and the
last binarized block for both Bi-Real Net and ReActNet. To analyze the effectiveness of £4,
we further show its value during training in Fig. 3 (c), where the loss value is decreased on
both validation and test sets. This also indicates that the variance of activation is enlarged by
£A, which enables it to encode more cues and boost the performance.

Analysis on weight distribution: Real-valued latent weights are optimized by £LF to find
a flat minimum. This experiment analyzes the weight distributions learned by our method.
As shown in Fig. 4, the distribution of weights in Bi-Real Net [24] trained with [26] shows a
peak around 0. Distribution of latent weights trained by our method shows two peaks, respec-
tively. It is easy to infer that, latent weights learned by [26] are sensitive to disturbance, e.g.,
a small disturbance easily changes the binarized weights. Weights learned by our method
are more robust to disturbance, and produce smaller quantization errors after binarization.
We further quantify BNN stability by measuring the sign flip rate, which also shows that our
method is more robust to noise turbulence as shown in Fig. 5. More computation details and
visualizations are provided in Supp. A.1.
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Methods R P C A Mean Methods S P L C Mean
ResNet-18 [32]1 | 732 718 442 587 620 ResNet-187 670 69.7 60.6 946 73.0
Bi-Real Net [24] | 649 65.6 413 432 53.8 Bi-Real Net [24] | 59.6 647 597 923 69.1

+£6 4 LF 64.8 656 43.1 437 543 +£6 4+ LF 617 67.1 607 958 713
ours 66.0 66.1 433 44.6 55.0 ours 62.1 67.8 624 962 721
ReActNet [25] | 63.0 63.8 446 406 53.0 ReActNet [25] | 614 604 612 932 69.1
+£6 4 LF 670 67.9 455 466 567 +L6 4+ LF 62.6 67.2 622 953 71.8
ours 671 676 456 479 570 ours 621 669 629 960 72.0

Table 2: Comparison on OfficeHome with Table 3: Comparison on VLCS with S (Sun),
A(Art), R(Real), P(Product) and C(Clipart). P (Pascal), L (LabelMe) and C (Caltech).

Methods A C P S Mean
Bi-Real Net w/o £4 [24] 48.7 604 720 592 60.1
Bi-Real Net w/ £A 52.8 63.7 76.1 61.8 63.6

Table 4: Comparison on PACS with Bi-Real Net without ImageNet pre-trained.

Methods A C P S Mean
ReActNet [25] 58.9 67.6 85.5 574 67.4
ours 60.4 69.2 88.4 63.9 70.5

Table 5: Comparison on PACS with ReActNet with backbone fixed.

4.3 Comparison With Recent Works

Comparison on DG datasets: This part first compares with existing BNNs and DG meth-
ods on three commonly used DG datasets. Table 1 summarizes the comparison on PACS,
where the performance of the real-valued ResNet-18 is also reported [16]. Currently, there
is no BNN method working on DG. We hence apply different DG methods designed for
real-valued networks [3, 16, 42] on Bi-Real Net. Results show that these DG methods do not
boost the DG performance of Bi-Real Net. Applying £4 or £LC + LT to Bi-Real Net brings
performance gains as shown in Table 1. Our method combines those losses and achieves
the best performance, e.g., outperforms Bi-Real Net by 3.0% in accuracy. Our method also
outperforms other BNNs methods [30, 38], and also boosts the performance of ReActNet.

To further evaluate the effectiveness of our method, we conduct experiments on datasets
OfficeHome and VLCS and summarize the comparison in Table 2 and 3 respectively. On
those datasets, we can get similar conclusion as shown in Table 1, i.e., our method consis-
tently boosts the DG performance of BNNs like Bi-Real Net and ReActNet. Experiment
results in Table 1, 2 and 3 also clearly show the validity of our proposed losses.

We also test the effectiveness of our method with two different training setups. One setup
does not use ImageNet for pre-training, hence makes the BNN get easily overfitted to the
training set. As shown in Table 4, £4 brings a more substantial performance enhancement
in this training setup. The other setup fixes the backbone pre-trained on ImageNet and fine-
tunes the FC layer on PACS source dataset. As shown in Table 5, our method outperforms
the ReActNet by 3.1%. We hence could conclude that, our method is effective in boosting
the DG of BNNSs for both setups with or without pre-training.

Comparison on CIFAR-100 and ImageNet: We also evaluate our method on CIFAR-
100 [20] and ImageNet [6]. In Table 6, our method achieves the accuracy of 70.53% on
CIFAR-100 [20], outperforming recent methods [5, 26]. In Table 7, our method achieves
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Method Top-1 Acc (%) Method GFLOPs Top-1 Acc (%)
Bi-Real Net [5] 68.78 CI-BCNN [36] 0.154 56.7
+HOW [26] 68.90 R2B Net [27] 0.165 65.4
+LA 70.15 MeliusNet29 [1] 0.214 65.8
+L£8+ LF 70.40 ReActNet [25] 0.087 69.4
ours 70.53 ours 0.087 68.9

Table 6: Comparison on CIFAR-100 with Bi- Table 7: Comparison on ImageNet with re-
Real Net following [5]. cent SOTA BCNN methods.

comparable performance with ReActNet [25] and outperforms other competitors in aspects
of both accuracy and efficiency.

5 Conclusion

This paper shows that BNNs presents degraded DG capability compared with FNNs, and ad-
dresses this issue by optimizing the distribution of BNN parameters and activations. We op-
timize real-valued latent weights to pursue a flat minimum, meanwhile minimize differences
between real-valued and binarized weights. Our method also optimizes the distributions
of BNN activations to decrease the quantization errors caused by binarization. Extensive
experiments on five datasets reveal the promising performance of the proposed method.
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Foundation of China under Grant No. U20B2052, 61936011.



YE ET AL.: DOMAIN GENERALIZATION CAPABILITY ENHANCEMENT FOR BNNS 11

References

[1] Joseph Bethge, Christian Bartz, Haojin Yang, Ying Chen, and Christoph Meinel.
Meliusnet: Can binary neural networks achieve mobilenet-level accuracy? arXiv
preprint arXiv:2001.05936, 2020.

[2] Adrian Bulat and Georgios Tzimiropoulos. Xnor-net++: Improved binary neural net-
works. In BMVC, 2019.

[3] Junbum Cha, Sanghyuk Chun, Kyungjae Lee, Han-Cheol Cho, Seunghyun Park, Yun-
sung Lee, and Sungrae Park. Swad: Domain generalization by seeking flat minima.
arXiv preprint arXiv:2102.08604, 2021.

[4] Junbum Cha, Kyungjae Lee, Sungrae Park, and Sanghyuk Chun. Domain generaliza-
tion by mutual-information regularization with pre-trained models. European Confer-
ence on Computer Vision (ECCV), 2022.

[5] Tianlong Chen, Zhenyu Zhang, Xu Ouyang, Zechun Liu, Zhigiang Shen, and
Zhangyang Wang. “bnn - bn = ?”: Training binary neural networks without batch
normalization. In CVPR Workshops, 2021.

[6] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A
large-scale hierarchical image database. In CVPR, 2009.

[7] Ruizhou Ding, Ting-Wu Chin, Zeye Liu, and Diana Marculescu. Regularizing activa-
tion distribution for training binarized deep networks. In CVPR, 2019.

[8] Qi Dou, Daniel Coelho de Castro, Konstantinos Kamnitsas, and Ben Glocker. Domain
generalization via model-agnostic learning of semantic features. NeurIPS, 2019.

[9] Yingjun Du, Jun Xu, Huan Xiong, Qiang Qiu, Xiantong Zhen, Cees GM Snoek, and
Ling Shao. Learning to learn with variational information bottleneck for domain gen-
eralization. In ECCV, 2020.

[10] Antonio DInnocente and Barbara Caputo. Domain generalization with domain-specific
aggregation modules. In German Conference on Pattern Recognition, 2018.

[11] Chen Fang, Ye Xu, and Daniel N Rockmore. Unbiased metric learning: On the utiliza-
tion of multiple datasets and web images for softening bias. In /CCV, 2013.

[12] Pierre Foret, Ariel Kleiner, Hossein Mobahi, and Behnam Neyshabur. Sharpness-aware
minimization for efficiently improving generalization. arXiv, 2020.

[13] Timur Garipov, Pavel Izmailov, Dmitrii Podoprikhin, Dmitry P Vetrov, and Andrew G
Wilson. Loss surfaces, mode connectivity, and fast ensembling of dnns. NeurIPS, 2018.

[14] Jiaxin Gu, Junhe Zhao, Xiaolong Jiang, Baochang Zhang, Liu Jianzhuang, Guodong
Guo, and Rongrong Ji. Bayesian optimized 1-bit cnns. In ICCV, 2019.

[15] Shoubo Hu, Kun Zhang, Zhitang Chen, and Laiwan Chan. Domain generalization via
multidomain discriminant analysis. In Uncertainty in Artificial Intelligence, 2020.

[16] Zeyi Huang, Haohan Wang, Eric P Xing, and Dong Huang. Self-challenging improves
cross-domain generalization. In ECCV, 2020.



12

YE ET AL.: DOMAIN GENERALIZATION CAPABILITY ENHANCEMENT FOR BNNS

(17]

(18]

[19]

(20]

(21]

[22]

(23]

(24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]

Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio.
Binarized neural networks. In NeurIPS, 2016.

Pavel Izmailov, Dmitrii Podoprikhin, Timur Garipov, Dmitry Vetrov, and Andrew Gor-
don Wilson. Averaging weights leads to wider optima and better generalization. arXiv,
2018.

Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and
Ping Tak Peter Tang. On large-batch training for deep learning: Generalization gap and
sharp minima. arXiv, 2016.

Alex Krizhevsky. Learning multiple layers of features from tiny images. 2009.

Da Li, Yongxin Yang, Yi-Zhe Song, and Timothy M Hospedales. Deeper, broader and
artier domain generalization. In ICCV, 2017.

Haoliang Li, YuFei Wang, Renjie Wan, Shiqi Wang, Tie-Qiang Li, and Alex C Kot.
Domain generalization for medical imaging classification with linear-dependency reg-
ularization. arXiv preprint arXiv:2009.12829, 2020.

Chunlei Liu, Wenrui Ding, Xin Xia, Baochang Zhang, Jiaxin Gu, Jianzhuang Liu, Ron-
grong Ji, and David Doermann. Circulant binary convolutional networks: Enhancing
the performance of 1-bit decnns with circulant back propagation. In CVPR, 2019.

Zechun Liu, Baoyuan Wu, Wenhan Luo, Xin Yang, Wei Liu, and Kwang-Ting Cheng.
Bi-real net: Enhancing the performance of 1-bit cnns with improved representational
capability and advanced training algorithm. In ECCV, 2018.

Zechun Liu, Zhigiang Shen, Marios Savvides, and Kwang-Ting Cheng. Reactnet: To-
wards precise binary neural network with generalized activation functions. In ECCV,
2020.

Zechun Liu, Zhigiang Shen, Shichao Li, Koen Helwegen, Dong Huang, and Kwang-
Ting Cheng. How do adam and training strategies help bnns optimization? arXiv
preprint arXiv:2106.11309, 2021.

Brais Martinez, Jing Yang, Adrian Bulat, and Georgios Tzimiropoulos. Training binary
neural networks with real-to-binary convolutions. In /ICLR, 2019.

Toshihiko Matsuura and Tatsuya Harada. Domain generalization using a mixture of
multiple latent domains. In AAAI 2020.

Fengchun Qiao, Long Zhao, and Xi Peng. Learning to learn single domain generaliza-
tion. In CVPR, 2020.

Haotong Qin, Ruihao Gong, Xianglong Liu, Mingzhu Shen, Ziran Wei, Fengwei Yu,
and Jingkuan Song. Forward and backward information retention for accurate binary
neural networks. In CVPR, 2020.

Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. Xnor-net:
Imagenet classification using binary convolutional neural networks. In ECCV, 2016.



YE ET AL.: DOMAIN GENERALIZATION CAPABILITY ENHANCEMENT FOR BNNS 13

[32] Seonguk Seo, Yumin Suh, Dongwan Kim, Geeho Kim, Jongwoo Han, and Bohyung
Han. Learning to optimize domain specific normalization for domain generalization.
In ECCV, 2020.

[33] Yuzhang Shang, Dan Xu, Ziliang Zong, Ligiang Nie, and Yan Yan. Contrastive mutual
information maximization for binary neural networks. 2021.

[34] Hemanth Venkateswara, Jose Eusebio, Shayok Chakraborty, and Sethuraman Pan-
chanathan. Deep hashing network for unsupervised domain adaptation. In CVPR,
2017.

[35] Riccardo Volpi and Vittorio Murino. Addressing model vulnerability to distributional
shifts over image transformation sets. In ICCV, 2019.

[36] Ziwei Wang, Jiwen Lu, Chenxin Tao, Jie Zhou, and Qi Tian. Learning channel-wise
interactions for binary convolutional neural networks. In CVPR, 2019.

[37] Weixiang Xu, Qiang Chen, Xiangyu He, Peisong Wang, and Jian Cheng. Improv-
ing binary neural networks through fully utilizing latent weights. arXiv preprint
arXiv:2110.05850, 2021.

[38] Zihan Xu, Mingbao Lin, Jianzhuang Liu, Jie Chen, Ling Shao, Yue Gao, Yonghong
Tian, and Rongrong Ji. Recu: Reviving the dead weights in binary neural networks. In
ICCV, 2021.

[39] Jianming Ye, Jingdong Wang, and Shiliang Zhang. Distillation-guided residual learning
for binary convolutional neural networks. IEEE Transactions on Neural Networks and
Learning Systems, 2021.

[40] Shanshan Zhao, Mingming Gong, Tongliang Liu, Huan Fu, and Dacheng Tao. Domain
generalization via entropy regularization. NeurIPS, 2020.

[41] Yuyang Zhao, Zhun Zhong, Fengxiang Yang, Zhiming Luo, Yaojin Lin, Shaozi Li, and
Nicu Sebe. Learning to generalize unseen domains via memory-based multi-source
meta-learning for person re-identification. In CVPR, 2021.

[42] Kaiyang Zhou, Yongxin Yang, Yu Qiao, and Tao Xiang. Domain generalization with
mixstyle. In ICLR, 2020.

[43] Kaiyang Zhou, Ziwei Liu, Yu Qiao, Tao Xiang, and Chen Change Loy. Domain gener-
alization: A survey. arXiv preprint arXiv:2103.02503, 2021.

[44] Kaiyang Zhou, Yongxin Yang, Yu Qiao, and Tao Xiang. Domain adaptive ensemble
learning. IEEE Transactions on Image Processing, 2021.

[45] Shilin Zhu, Xin Dong, and Hao Su. Binary ensemble neural network: More bits per
network or more networks per bit? In CVPR, 2019.





