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Motivation
◆ The degraded modeling capability for visual cues of BNNs weakens

their domain generalization capability.

◆ Domain Generalization (DG) capability is important for computer

vision tasks, this paper aims to improve the DG capability of BNNs

through enhancing their robustness to domain shifts..

Network Architecture

◆The framework of our methods

◆The overall loss

ℒ𝐵 : the task specific loss calculated using binarized weights.

ℒ𝐹 : the task specific loss calculated using real-valued weights with

disturbance to find a flat minimum.

ℒ𝐺 : the gap loss to measure the distance between binarized weights and

real-valued weights.

ℒ𝐴 : the activation regularization loss to optimize the distribution of

activations.

Formulation

◆ Flat Minima Optimization on BNN Weights

A solution to a flat minimum can be found by solving

argmin
෡𝑊
ℒμ
F( ෡𝑊) within a neighborhoods bounded by μ, i.e.,

We apply Δ as a disturbance for ෡𝑊. The network is end-to-end

trained with task specific loss ℒF calculated on FNN outputs to find 

flat minima. 

We minimizes the differences between binarized and real-valued 

weights.

◆ Regularization on BNN Activations

E and G denote quantization error loss and even-distribution loss

respectively.

Experiments

◆Ablation study

◆Comparison with state-of-the-arts

◆Visualization

Contribution
◆ Weights: We optimize the distributions to seek flat minima which

show robustness to domain shift.

◆ Activations: We optimize the distributions by reducing quantization

error and producing even-distribution activations to preserve the DG

capability of real-valued activations.

◆ Results: Experiment results on different network architectures on

both DG and traditional datasets show better performance comparing

with recent DG methods and BNNs methods.

Comparison on PACS, with A (Art-painting), C (Cartoon), 

P (Photo) and S (Sketch).
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Proposed method Bi-Real Net [24]

Bi-Real Net [24]Proposed method

Comparison on CIFAR-100 with Bi-

Real Net following [5].

Comparison on ImageNet with recent SOTA 

BCNN methods.

Comparison on OfficeHome with R(Real), 

P(Product), C(Clipart) and A(Art).

Comparison on VLCS with S (Sun), P 

(Pascal), L (LabelMe) and C (Caltech).
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BNN and real-valued networks performance on 

in domain and out-of-domain dataset on PACS

G is applied to encode more 

meaningful cues at each.

The target can be achieved by maximizing the variance 

at each location of the activation over the training batch.

E is applied to decrease the 

quantization error:
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