

Motivation

- The degraded modeling capability for visual cues of BNNs weakens their domain generalization capability.
- Domain Generalization (DG) capability is important for computer vision tasks, this paper aims to improve the DG capability of BNNs through enhancing their robustness to domain shifts..

BNN and real-valued networks performance on in domain and out-of-domain dataset on PACS

Contribution

- Weights: We optimize the distributions to seek flat minima which show robustness to domain shift.
- Activations: We optimize the distributions by reducing quantization error and producing even-distribution activations to preserve the DG capability of real-valued activations.
- **Results**: Experiment results on different network architectures on both DG and traditional datasets show better performance comparing with recent DG methods and BNNs methods.

Network Architecture

◆ The overall loss $\mathcal{L} = \mathcal{L}^{\mathrm{B}} + \beta \mathcal{L}^{\mathrm{F}} + \alpha \mathcal{L}^{\mathrm{G}} + \gamma \mathcal{L}^{\mathrm{A}},$

 \mathcal{L}^{B} : the task specific loss calculated using binarized weights.

 \mathcal{L}^{F} : the task specific loss calculated using real-valued weights with disturbance to find a flat minimum.

 \mathcal{L}^{G} : the gap loss to measure the distance between binarized weights and real-valued weights.

 \mathcal{L}^{A} : the activation regularization loss to optimize the distribution of activations.

Formulation • Flat Minima Optimization on BNN Weights

A solution to a flat minimum can be found by solving arg min $\mathcal{L}^{\mathrm{F}}_{\mu}(\widehat{W})$ within a neighborhoods bounded by μ , *i.e.*,

flat minima.

We minimizes the differences between binarized and real-valued weights.

E and G denote quantization error loss and even-distribution loss respectively.

50%

 $\mathbf{E} =$

 $\mathcal{L}^A = \frac{1}{T}$

Domain Generalization Capability Enhancement for Binary Neural Networks Jianming Ye¹, Shunan Mao¹, Shiliang Zhang¹ ¹Institute of Digital Media, EECS, Peking University jmye@pku.edu.cn, snmao@pku.edu.cn,slzhang.jdl@pku.edu.cn

$$\arg\min_{\hat{W}} \mathcal{L}^{\mathrm{F}}_{\mu}(\hat{W}) = \arg\min_{\hat{W}} \max_{\|\Delta\|_{2} \leq \mu} \mathcal{L}^{\mathrm{F}}(\hat{W} + \Delta),$$

We apply Δ as a disturbance for \widehat{W} . The network is end-to-end trained with task specific loss \mathcal{L}^{F} calculated on FNN outputs to find

$$\hat{O}_{n+1}^{\mathrm{F}} = \mathrm{bn}(\mathrm{Conv}(\hat{\omega}_n + \Delta, O_n^{\mathrm{F}})),$$

$$\mathcal{L}^G = \sum_{n=1}^N \|(\hat{\omega}_n - \omega_n)\|_2$$

Regularization on BNN Activations

$$\mathcal{L}^A = \mathbf{E} + \mathbf{G},$$

E is applied to decrease the quantization error:

$$\frac{1}{P \cdot R} \sum_{p=1}^{P} \sum_{r=1}^{R} -(\hat{o}^{r}(p))^{2},$$

G is applied to encode more meaningful cues at each.

$$\mathbf{G} = \frac{1}{P} \sum_{p=1}^{P} (\frac{1}{R} \sum_{r=1}^{R} \hat{o}^{r}(p))^{2}.$$

$$\frac{1}{P}\sum_{p=1}^{P}(\frac{1}{R}\sum_{r=1}^{R}-(\hat{o}^{r}(p))^{2}+(\frac{1}{R}\sum_{r=1}^{R}\hat{o}^{r}(p))^{2})=-\frac{1}{P}\sum_{p=1}^{P}\sigma^{2}(p),$$

The target can be achieved by maximizing the variance at each location of the activation over the training batch.

Experiments

♦ Ablation study

• Comparison with state-of-the-arts

Methods	A	С	Р	S	Mean
ResNet-18 [16]†	83.4	80.3	96.0	80.9	85.1
IR-Net [30]	70.4	72.4	87.8	73.5	76.0
ReCU [38]	70.5	73.1	87.0	71.2	75.45
Bi-Real Net [24]	69.2	72.6	86.7	70.6	74.8
+RSC [16]	65.1	71.5	85.2	67.2	72.3
+SWAD [3]	67.3	72.9	87.0	74.0	75.3
+MixStyle [42]	69.5	72.3	87.0	70.9	74.9
+MIRO [4]	69.9	72.9	87.3	71.2	75.3
$+\mathcal{L}^{A}$	69.6	72.9	88.9	74.7	76.5
+ $\mathcal{L}^G + \mathcal{L}^{\mathrm{F}}$	72.0	73.5	88.7	74.9	77.3
ours	72.4	73.7	89.8	75.5	77.8
ReActNet [25]	66.4	68.5	85.6	75.7	74.0
+ \mathcal{L}^G + $\mathcal{L}^{ ext{F}}$	72.3	72.9	90.4	74.2	77.5
ours	72.2	73.9	89.3	75.7	77.8

P (Photo) and S (Sketch).

♦ Visualization

Comparison on PACS, with A (Art-painting), C (Cartoon),

Methods	R	Р	С	А	Mean	Methods	S	Р	L	С	Mean
ResNet-18 [32]†	73.2	71.8	44.2	58.7	62.0	ResNet-18†	67.0	69.7	60.6	94.6	73.0
Bi-Real Net [24]	64.9	65.6	41.3	43.2	53.8	Bi-Real Net [24]	59.6	64.7	59.7	92.3	69.1
+ \mathcal{L}^G + \mathcal{L}^{F}	64.8	65.6	43.1	43.7	54.3	+ $\mathcal{L}^G + \mathcal{L}^{ ext{F}}$	61.7	67.1	60.7	95.8	71.3
ours	66.0	66.1	43.3	44.6	55.0	ours	62.1	67.8	62.4	96.2	72.1
ReActNet [25]	63.0	63.8	44.6	40.6	53.0	ReActNet [25]	61.4	60.4	61.2	93.2	69.1
+ \mathcal{L}^G + \mathcal{L}^F	67.0	67.9	45.5	46.6	56.7	+ \mathcal{L}^G + $\mathcal{L}^{ ext{F}}$	62.6	67.2	62.2	95.3	71.8
ours	67.1	67.6	45.6	47.9	57.0	ours	62.1	66.9	62.9	96.0	72.0
Comparison on OfficeHome with R(Real),					Comparison on VLCS with S (Sun), P						
P(Product), C(Clipart) and A(Art).					(Pascal), L (LabelMe) and C (Caltech).						
Method Top-1 Acc (%)			Method	GFLOPs		To	Top-1 Acc (%)				
Bi-Real Net	Bi-Real Net [5] 68.78			CI-BCNN [36]	0.154			56.7			
+HOW [26] 68.90			R2B Net [27]	0.165			65.4				
$+\mathcal{L}^{A}$ 70.15			MeliusNet29 [1]	0.214			65.8				
$+\mathcal{L}^G + \mathcal{L}^F$ 70.4		70.40	70.40		ReActNet [25]	0.087			69.4		
ours		70.53			ours	0.087			68.9		
							•		•		

Comparison on CIFAR-100 with Bi-Real Net following [5].

Comparison on ImageNet with recent SOTA BCNN methods.