

German Research Center for Artificial

TECHNISCHE UNIVERSITÄT KAISERSLAUTERN

Motivation

Illustrating Challenges of Video Object Detection [1]

Prior works [1,2,3,4] mainly enhance the target frame feature representation by aggregating features from support frames.

Contributions

- SparseVOD, a novel end-to-end trainable video object detection method.
- We propose an idea of exploiting temporal information to learn region proposals.
- We exceed state-of-the-art methods on increasing IoU thresholds (IoU > 0.5) and achieve optimal speed-accuracy tradeoff.

Spatio-Temporal Learnable Proposals for End-to-End Video Object Detection

Khurram Azeem Hashmi

Didier Stricker

German Research Center for Artificial Intelligence (DFKI)

Single Frame Baseline	TFE	SPFA	AP ₅₀ (%)	AP ₇₅ (
	×	×	71.1	52.4
\checkmark	\checkmark	×	76.9 _{↑5.8}	57.5 _↑
\checkmark	×	\checkmark	$79.1_{18.0}$	59.0 ↑
	\checkmark	\checkmark	80.3	60.1_{\uparrow}

Muhammad Zeshan Afzal

Methods	Venue	Backbone	Detector	mAP _{50:95} (%)	mAP ₅₀ (%)	mAP ₇₅ (%
FGFA* [45]	ICCV'17	ResNet-50	Faster R-CNN	47.1	74.7	52.0
SELSA* [42]	ICCV'19	ResNet-50	Faster R-CNN	48.6	78.4	52.5
MEGA* [4]	CVPR'20	ResNet-50	Faster R-CNN	48.1	77.3	52.2
TROI* [11]	AAAI'21	ResNet-50	Faster R-CNN	48.8	78.9	52.8
TransVOD [19]	ACM MM'21	ResNet-50	Deformable DETR	-	79.9	-
Frame Baseline [37]	CVPR'21	ResNet-50	Sparse R-CNN	48.7	71.1	52.4
SparseVOD	BMVC'22	ResNet-50	Sparse R-CNN	54.7	80.3	60.1
FGFA* [45]	ICCV'17	ResNet-101	Faster R-CNN	50.4	78.1	56.7
SELSA* [42]	ICCV'19	ResNet-101	Faster R-CNN	52.4	81.5	57.9
MEGA* [4]	CVPR'20	ResNet-101	Faster R-CNN	53.1	82.9	59.1
TROI* [11]	AAAI'21	ResNet-101	Faster R-CNN	51.6	82.6	56.3
MAMBA [36]	AAAI'21	ResNet-101	Faster R-CNN	-	84.6	-
TransVOD [19]	ACM MM'21	ResNet-101	Deformable DETR	-	81.9	-
Frame Baseline [37]	CVPR'21	ResNet-101	Sparse R-CNN	51.7	74.6	53.9
SparseVOD	BMVC'22	ResNet-101	Sparse R-CNN	56.9	81.9	63.1
FGFA* [45]	ICCV'17	ResNeXt-101	Faster R-CNN	52.5	79.6	59.8
SELSA* [42]	ICCV'19	ResNeXt-101	Faster R-CNN	54.2	83.1	61.3
MEGA [4]	CVPR'20	ResNeXt-101	Faster R-CNN	-	84.1	-
TROI* [11]	AAAI'21	ResNeXt-101	Faster R-CNN	54.4	84.3	60.9
Frame Baseline [37]	CVPR'21	ResNeXt-101	Sparse R-CNN	53.3	76.6	57.9
SparseVOD	BMVC'22	ResNeXt-101	Sparse R-CNN	58.0	83.1	64.3

[1] Wu, H., Chen, Y., Wang, N., & Zhang, Z. (2019). Sequence level semantics aggregation for video object detection. [2] Gong, T., Chen, K., Wang, X., Chu, Q., Zhu, F., Lin, D., ... & Feng, H. (2021, May). Temporal ROI align for video object [3] Han, L., Wang, P., Yin, Z., Wang, F., & Li, H. (2021). Class-aware feature aggregation network for video object detection. *IEEE* [4] Han, M., Wang, Y., Chang, X., & Qiao, Y. (2020, August). Mining inter-video proposal relations for video object detection. In European conference on computer vision (pp. 431-446). Springer, Cham.

BNVC 2022