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Overview. The supplementary material is organized as follows: Section 1 revisits the Sparse
R-CNN [15], which is used as a still image detector in our method; Section 2 reports addi-
tional details of our experimental setup to reproduce the results; Section 3 presents additional
yet important ablation studies omitted in the main paper due to space constraints. Section 4
provides a qualitative analysis of our method; Section 5 analyses the failure cases of our
SparseVOD.

1 Revisiting Sparse R-CNN
Sparse R-CNN [15] has emerged as a strong baseline for object detection in still images by
replacing dense predictions from Region Proposal Network (RPN) with a small set of can-
didate regions. It adopts an iterative architecture based on a Dynamic head to predict and
enhance the predictions progressively. Each iterative stage takes multi-scale feature maps
from the FPN-based ResNet backbone [7, 11], proposal boxes, and their corresponding pro-
posal features. Alternative to predictions from RPN, proposal boxes are a small fixed set of
learnable candidate regions (Np × 4), highlighting the possible locations of objects in the
image. Proposal features are high dimensional latent vectors (Np ×C), representing rich in-
stance attributes of each proposal box like object pose and shape. The RoIAlign [8] operation
is performed on each proposal box to extract RoI features. Then, each RoI feature and the
corresponding proposal feature are fed to the proposed dynamic instance interactive head to
learn optimal object features for classification and regression. Each stage returns predicted
boxes, corresponding categories, and object features of the boxes. The predicted boxes and
object features from one stage are enhanced input proposal boxes and proposal features for
the next stage, respectively. After each stage, set prediction loss [1] is computed on the fixed
number of predictions to achieve the best bipartite matching among prediction and ground
truth objects. Due to the purely sparse design and object proposal learning capabilities, we
employ Sparse R-CNN as our still image detector baseline.
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2 Experimental Setup

2.1 Dataset and Evaluation Metrics.

We conduct experiments on the ImageNet VID dataset [14], which comprises 3862 training
videos and 555 validation videos. Following prior works [3, 17, 19], we train our model on
a combination of ImageNet VID and DET datasets and evaluate the results on the validation
set. Besides evaluating the performance on the mean average precision (mAP) @IoU=0.5
as in [19, 20], we compute mAPs @IoU=0.75 and @IOU=0.5:95 as in [10] to compare the
robustness of our SparseVOD with previous state-of-the-art methods.

2.2 Implementation Details.

Our implementation is based on MMTracking [2] and PyTorch. Analogous to [15], we use
AdamW [12] optimizer with a weight decay of 10−4. We train our network for 12 epochs
with a batch size of 8 on 8 GPUs. Initially, the learning rate is set to 2.5×10−5 and divided by
10 at the 8-th and 11-th epochs. Following [1, 15, 21], we set λcls = 2,λL1 = 5,andλgiou = 2.
We follow the basic settings of [15] and set the number of iterative stages, proposal boxes,
and the corresponding proposal features to 6, 100, and 100, respectively. We adopt ImageNet
pre-trained [4] ResNet-50 [7], ResNet-101, and ResNeXt-101 [18] to compare performance
with SOTA methods. We follow identical frame sampling settings for the target and support
frames as employed in [16, 17] during the inference for direct comparison. Furthermore,
we do not require any complex post-processing methods such as NMS, which simplifies the
overall pipeline of SparseVOD.

3 More Ablation Studies

Similar to [9], all experiments are conducted on ImageNet VID dataset with ResNet-50 as
the backbone network. The run time (FPS) is tested on a single DGX A100 GPU.

3.1 Proposal Initialization Scheme

Following [15], we conduct ablation studies to assess the impact of the proposal initializa-
tion scheme on the performance of our method in Table 1. We simply adopt four different
initialization strategies. (1) Center: all object proposals are initialized at the centre. The
height and width of the boxes are one-tenth of the frame size. (2) Image: the size of all
object proposals is equal to the size of the frame. (3) Grid: initializing proposals as a grid by
adopting the grid initialization strategy of [13]. (4) Random: adopting Gaussian distribution
to randomly initialize centre, width, and height of region proposals. The results in Table 1
demonstrate that the detection performance of our method is relatively independent of the
proposal initialization technique.
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Initialization AP50(%) AP75(%) AP50:95(%)
Center 80.1 59.9 53.9
Image 80.5 60.3 54.8
Grid 80.0 59.7 53.7

Random 80.3 60.1 54.7

Table 1: Ablation on proposal initialization method. Note that the proposal box initialization
technique does not contribute to the detection performance.

3.2 Effect of Number of Proposals

We also investigate the effect of the number of proposals on our method in Table 2. Analo-
gous to [15], we observe a direct relationship between the rise in proposals to the achieved
performance. However, increasing proposals from 100 to 300 significantly increases the run
time due to the involved spatio-temporal feature aggregation between video frames. Thus,
we choose 100 proposals as the best tradeoff in the default settings.

Proposals AP50(%) AP75(%) FPS
100 80.3 60.1 14.4
300 80.7 60.5 7.8
500 80.9 61.3 5.5

Table 2: Effect of number of proposals.

3.3 Impact of Number of Stages on Increasing IoU thresholds

Although we summarize the impact of the number of stages on the performance in the main
paper (Section 4.4), here, we intend to investigate performance on increasing IoU thresholds
(0.5 ≥ IoU ≤ 0.95). As shown in Figure 1, even with a number of stages set to 3, our Spar-
seVOD already reaches comparable AP50:95 of 52.7%. Note that as presented in the main
paper (Table 1), the previous best competitor TROI [5] achieves AP50:95 of 52.8% with a run
time of 7.5 FPS. The detection performance of our SparseVOD keeps increasing with the
rise in the number of stages and finally stabilizes with 6 iterative stages after accomplishing
57.7% AP50:95. Thanks to the Spatio-temporal proposal learning, our SparseVOD attains
comparable performance on increasing IoU thresholds with a sparse set of object proposals
while yielding a run time of 23.7 FPS (52.7% AP50:95, number of stages = 3).
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Figure 1: The detection performance of our method at different stages under varying IoU
threshold.

4 Qualitative Comparison

We present a qualitative comparison between a single-frame baseline [15], the previous state-
of-the-art proposal-based VOD approach [5], and our proposed SparseVOD in Figure 2. The
single-frame detector misses objects (Watercraft) and misclassifies (Squirrel as Fox) in low-
quality frames, as depicted in (a) and (b), respectively. Despite leveraging spatio-temporal
feature aggregation, the prior proposal-based method TROI [5] (built upon SELSA [17])
overlooks detection (Watercraft) in Figure 2(a) and yields false positive (Squirrel as Fox)
in Figure 2(b). We argue that since these methods generate unreliable object proposals on
low-quality frames (3rd and 4th column in Figure 2(a), the spatio-temporal proposal feature
aggregation produces sub-optimal proposal features for the target frame. Alternatively, our
SparseVOD exploits the spatio-temporal feature aggregation to generate proposals. This en-
sures optimal proposal features even on low-quality frames, which not only resolves missed
detection (Watercraft) in Figure 2(a) but also alleviates misclassification (Fox to Squirrel) in
Figure 2(b).

5 Failure Case Analysis

Although the proposed SparseVOD simplifies the overall VOD pipeline and provides high-
quality detections, it fails in some cases. A couple of such scenarios are illustrated in Fig-
ure 3. We observe that our method either overlooks or misclassifies objects suffering from
rare poses and occlusions in the entire video. In the second and third frames of the first
row, the detector misses a car (highlighted in pink) because of the rare pose challenge where
only a fragment of an object is visible. The second row depicts missed (in pink) and false
detections (in blue). This is due to the large occlusion of zebras in the entire video. Despite
exploiting temporal information, the model yields uncertain predictions, leading to missed
detections or false classification. We believe that more optimized temporal modelling, such
as incorporating inter-video context [6] in our SparseVOD to generate object proposals, is
required to further this research.
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Figure 2: Qualitative Comparison. Correct and missed predictions are highlighted in red and
blue, respectively. For each video, the first row represents detections from a single-frame
baseline [15]. The second row depicts results from a recent proposal-based method [5],
whereas the third row depicts results from our proposed SparseVOD. Thanks to spatio-
temporal learnable proposals, our SparseVOD effectively recognizes missed detections and
resolves misclassifications in low-quality frames, as illustrated in (a). Similarly, in (b), the
iterative proposal learning not only corrects misclassification from proposal-based methods
but also enhances localization, leading to more accurate predictions.
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Figure 3: Failure case analysis. The green highlights correct detections, whereas pink and
blue depict missed and false detections. The results are achieved on our SparseVOD with
ResNeXt-101 as the backbone network.
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