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In the Supplementary file, we will first introduce more details about our contributed
dataset RdHarmony in Section 1, and introduce the implementation details in Section 2.
Then, we will ablate each component of the loss function, investigate the network design,
and analyze the impact of different hyper-parameters in Section 3. We will explore the
performance variance using different settings of training data in Section 4. Besides, we
will exhibit the harmonization results of different methods on real test set Drl

te,b from base
categories in Section 5 and compare our method with the upper bound (row 13 in Table 2
in the main paper) in Section 6. We will introduce more details of user study conducted on
46 real-world composite images with human foregrounds and show example harmonization
results of different methods in Section 7. Then, we will demonstrate the generalization of
our CharmNet by conducting experiments on 5 more novel categories in Section 8. Finally,
we discuss the limitations in Section 9.

1 Dataset Construction
We construct rendered image harmonization dataset RdHarmony that contains rendered im-
ages with foregrounds of “human” and 5 object categories (“bottle”, “cake”, “motorcycle”,
“cow”, and “couch”) from different super-categories. Taking category “human” as an exam-
ple, we first introduce the data generation process in Section 1.1 and Section 1.2. Then, we
discuss the category extension in Section 1.3 and illustrate the diversity in Section 1.4.

1.1 Ground-truth Rendered Image Generation
Generating a large number of rendered images with human foregrounds requires various 3D
human characters placed in different 3D scenes. Considering the intra-category variance of
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Figure 1: The generation process of composite rendered images. Top row: one 2D scene with
10 different styles. Middle row: exchange the foregrounds between two rendered images
with different styles. Bottom row: obtained composite rendered images.

“human" category, we leverage the open-source software MakeHuman to create diverse 3D
human characters with distinct attributes including skeleton, body features (e.g., height, fa-
cial components), pose (e.g., walking, running), and clothes. Actually, due to the prevalence
of 3D modelling, there are abundant available 3D models of “human" category and other
categories that could be used (see Section 1.3). Besides, we leverage the 3D game engine
Unity3D and collect indoor and outdoor 3D scenes from Unity Asset Store and CG websites.
Then, we import 3D human characters into the 3D scenes and vary the camera viewpoints
to shoot various 2D scenes. In detail, we create 1,500 3D human characters, collect 30 3D
scenes, and set 50 camera viewpoints for each 3D scene, leading to 1,500 2D scenes with
unique foregrounds.

As claimed in Section 3 in the main paper, we employ UniStorm to control the weather
and time while producing 2D scenes. Based on the different capture conditions, we define 10
representative styles, including the night style as well as styles of Clear/Partly Cloudy/Cloudy
weather at sunrise&sunset/noon/other-times. For each 2D scene, we randomly sample one
rendered image from each style, resulting in a group of 10 images. Given 1,500 2D scenes,
we generate 15,000 rendered images with human foregrounds and different styles.

1.2 Composite Rendered Image Generation

As shown in Figure 1, for each 2D scene, we treat one person as foreground and obtain
the foreground mask M effortlessly using Unity3D. We have 10 rendered images {Ii|10

i=1}
with different styles {yi|10

i=1} from the same 2D scene, where yi is a 10-dim one-hot style
label vector. We denote the foreground person in rendered image Ii as Oi. After randomly
selecting Ii and I j from {Ii|10

i=1}, we could generate two pairs of composite rendered images
and ground-truth rendered images {Ii→ j,Ii}and {I j→i,I j} by exchanging Oi and O j, where
I j→i denotes the composite rendered image with foreground Oi and background of I j.

For rendered image pairs {I j→i,I j}, the style label of ground-truth rendered image I j is
y j as mentioned above. For composite rendered image I j→i, we simply assume that its style
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Figure 2: Examples of rendered training pairs from our RdHarmony with “human” category.

label vector is weighted average of foreground style yi and background style y j similar to
[9]: y j→i = r · yi +(1− r) · y j, in which foreground ratio r denotes the area of foreground
over the area of whole image.

We have generated 135,000 pairs of composite rendered images and ground-truth ren-
dered images for “human” category in RdHarmony. Examples of rendered training pairs with
“human” category are shown in Figure 2. It is worth mentioning that each above-mentioned
step (i.e., creating 3D characters, capturing 2D scenes, varying capture conditions, and gen-
erating composite rendered images) could be done automatically using scripts, making the
dataset efficiently constructed and easily extendable. Besides, with controllable capture con-
ditions (i.e., styles) in UniStorm, it is feasible to acquire ground-truth style labels, which are
useful for cross-domain knowledge transfer (Section 4.2 in the main text).

1.3 Considerable Extendability

We emphasize that we focus on human harmonization in this work, but the dataset con-
struction could be easily generalized to other categories. With the prosperity of Computer
Graphics and photogrammetry, 3D model markets are common, making 3D models and 3D
scenes more accessible than ever. To be more specific, 3D models of certain categories could
be automatically generated by specific software (e.g., MakeHuman, SpeedTree). 3D models
of other categories can be freely downloaded or purchased from Unity Asset Store and many
public websites 1.

With 3D scenes and 3D models available, the rest of steps (i.e., capturing 2D scenes,
varying capture conditions, and generating composite rendered images) could be done auto-
matically using scripts. To facilitate further study on image harmonization, all scrips used in
our dataset construction will be made publicly available.

Furthermore, for better demonstration, we extend RdHarmony to 5 more categories from
5 super-categories, including “bottle”, “cake”, “motorcycle”, “cow”, and “couch”. For each
novel category, we place 3D models in each 3D scene, select one 3D model as the foreground
and shoot a group of 2D scenes. In detail, for each category, we select 2 3D scenes, and set
50 camera viewpoints for each 3D scene, leading to 100 2D scenes. Then for each 2D scene,
we obtain a group of 10 images with 10 different styles. For each category, we can generate
1,000 rendered images with different styles, and produce 9,000 pairs of composite rendered

1www.cgtrader.com; www.aigei.com; www.cgmodel.com; www.turbosquid.com; www.sketchfab.com
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Figure 3: Example ground-truth rendered images in RdHarmony of “human” category. The
left four columns are outdoor scenes (raceway, downtown, street, and forest) and the right
two columns are indoor scenes (bar and stadium). Under each time of the day except “Night",
from top to bottom, we show rendered images captured under Clear, Partly Cloudy, and
Cloudy weather.
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Figure 4: Example ground-truth rendered images of extended 5 object categories. From left
to right, we show images from “bottle”, “cake”, “motorcycle”, “cow”, “couch” category.
Under each time of the day except “Night", we show rendered images captured under three
representative weather.
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images and ground-truth rendered images. Totally, our RdHarmony has 180,000 training
pairs from 6 novel categories.

1.4 Rich Diversity

To ensure the diversity of RdHarmony, we have put efforts on the rendered images in several
ways. First, as mentioned in Section 1.2, we collect 30 3D scenes from Unity Asset Store
and CG websites, including outdoor scenes (e.g., raceway, downtown, street, forest) and in-
door scenes (e.g., bar, stadium, gym). Second, to keep in line with the large intra-category
variance of “human” category, we leverage MakeHuman to create 1,500 distinct 3D human
characters with controllable attributes. For 5 object categories (“bottle”, “cake”, “motorcy-
cle”, “cow”, “couch”), we collect 3D models from Unity Asset Store and public websites.
Third, for each 2D scene, we sample 10 ground-truth rendered images with 10 different cap-
ture conditions (i.e., styles), including the the night style as well as styles of Clear/Partly
Cloudy/Cloudy weather at sunrise&sunset/noon/other-times. Note that each style is not a
discrete style, but covers a range of illumination intensity and direction. In Figure 3, we
select some indoor/outdoor 2D scenes, and exhibit all 10 ground-truth rendered images on
“human” category for each 2D scene. Besides, Figure 4 shows 10 ground-truth rendered
images for each 2D scene and one 2D scene for each object category. These can provide an
intuitive perspective for the diversity of our contributed rendered image dataset RdHarmony.

With a group of 10 images from the same scene, our ground-truth rendered images are
quite similar to day2night [10], i.e., the same scene captured under different capture con-
ditions. Therefore, we naturally adopt the same procedure as constructing Hday2night [2]
when generating composite rendered images, that being said, exchanging foregrounds within
the group of images. As stated in [2, 4], Hday2night could be deemed as a real composite
dataset, where the composite images are much closer to real-world applications. However,
collecting a set of images for exactly the same scene under different capture conditions is not
trivial [2], which limits the scale of Hday2night. On the contrary, our dataset construction
simulates the ideal generation process of training pairs for image harmonization that could
rarely be implemented in real scenarios. Our RdHarmony, which contains 180,000 pairs,
could supplement real dataset to a large extent.

2 Implementation Details

We adopt the UNet-like architecture of iDIH as backbone considering its simplicity and
effectiveness. Note that we do not use auxiliary semantic information as in [7] for brevity and
fair comparison with other methods. The domain-specific encoder (resp., decoder) contains
the first (resp., last) 4 layers in the encoder (resp., decoder). The other layers form the
domain-invariant encoder-decoder. After a few trials, we set λadv, λ rd

sty, and λ rl
sty to 0.1, 0.1,

and 0.05 respectively, by observing the harmonization quality of training images. The impact
of layer configuration and hyper-parameters can be found in Section 3. Following [2], we use
MSE, fMSE (foreground MSE), and PSNR as evaluation metrics. The images are resized to
256×256 in training and test phases. All the experiments except in Section 8 treat “human”
as the novel category.

Our network is implemented using Pytorch 1.4.0 and trained on ubuntu 16.04 LTS oper-
ation system, with 64GB memory, Intel Core i7-8700K CPU, and two GeForce GTX 1080
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# Lrd
G Lrd

in Lrd
out Lrl

W Lrl
ER fMSE ↓ PSNR ↑

1 339.02 36.06
2 X 303.69 36.45
3 X X X 300.22 36.50
4 X X X X 297.99 36.52
5 X X X X 297.94 36.51
6 X X X X X 296.40 36.60

L of Er L of Dr fMSE↓ PSNR↑
0 7 498.82 34.48
3 3 327.45 36.20
4 4 296.40 36.60
5 5 328.39 36.19
7 0 501.67 34.58

Table 1: Ablation studies. Left sub-table: ablation studies on the losses. Right sub-table:
ablation studies on the hyper-parameter L. We use Er (resp., Dr) to represent both Erd (resp.,
Drd) and Erl (resp., Drl). “L of Er (resp., Dr)” denotes the number of unshared layers in the
first (resp., third) stage. All results are tested on Drl

te,n.

Ti GPUs. The weight of the network is initialized with values drawn from the normal distri-
bution N (mean = 0.0,std2 = 0.02).

The discriminator D consists of 3 convolution layers with channel number {64,32,1},
3×3 kernels and stride of 1, each of which is followed by a Leaky-ReLU except the last one.
The style classifiers Pin and Pout are the same in the structure and shared across domains.
They contain 4 convolution layers with channel number {64,32,16,1}, 3× 3 kernels and
stride of 1, each of which is followed by a BatchNorm, a ReLU, and a max-pooling layer
except the last one.

To train the network, we use Adam optimizer with β1 = 0.9 and β2 = 0.999. Learning
rate is initialized with 1e−4 and reduced by a factor of 10 at epochs 100 and 120. The batch
size is set to 8 and the models are trained for 150 epochs.

3 Ablation Studies
In this section, we will validate the effectiveness of different loss terms in Section 3.1,
explore the variants of network design in Section 3.2, and analyse the impact of hyper-
parameters in Section 3.3.

3.1 Loss Design
We ablate each component of the loss function in Table 1. When we use neither adversarial
loss nor style-related losses, the network only contains two three-stage generators. Though
the performance is degraded, it is still better than iDIH (row 4 in Table 2 in the main text)
due to the information sharing in the second stage. By adding adversarial loss Lrd

G after
the first stage, the performance is boosted, which demonstrates the efficacy of adversarial
loss to pull close two domains. Moreover, after adding two style losses Lrd

in and Lrd
out in the

rendered image domain, the performance is further improved, which indicates the potential
of available style information. We ablate the style aggregation loss Lrl

SA by its two terms Lrl
W

and Lrl
ER. The results demonstrate that each term is helpful and their combination achieves

further improvement with mutual collaboration.
We present example test images fromDrl

te,n harmonized under four different loss designs,
including Lrd

rec +Lrl
rec (row 1 of left sub-table in Table 1), Lrd

rec +Lrl
rec +Lrd

G (row 2), Lrd
rec +

Lrl
rec +Lrd

G +Lrd
in +Lrd

out (row 3), and our full method Lrd
rec +Lrl

rec +Lrd
G +Lrd

in +Lrd
out +Lrl

SA
(row 6). The results are shown in Figure 5. We observe that our CharmNet could produce
more harmonious results that are closer to the ground-truth real images. By comparing the
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Figure 5: Example results generated under different loss designs on Drl
te,n. From left to right,

we show the input composite real image, ground-truth real image, as well as the harmonized
results generated by Sim 1, Sim 2, Sim 3, and our full method CharmNet, where Sim 1
= Lrd

rec +Lrl
rec, Sim 2 = Lrd

rec +Lrl
rec +Lrd

G , Sim 3 = Lrd
rec +Lrl

rec +Lrd
G +Lrd

in +Lrd
out , and Full

Version = Lrd
rec +Lrl

rec +Lrd
G +Lrd

in +Lrd
out +Lrl

SA. The foregrounds are outlined in red.

results of “Sim 1" and “Sim 2" in Figure 5, it can be seen that adversarial lossLrd
G is important

for aligning two domains to generate reasonable harmonized results. By comparing the
results of “Sim 2", “Sim 3" and “Full Version", it can be seen that style classification losses
Lrd

in +Lrd
out in the rendered image domain and the style aggregation loss Lrl

SA in the real image
domain are both meaningful for image harmonization, and their combination ensures the
useful knowledge transfer across domains, thus leading to more satisfactory performance.

3.2 Network Design

We analyze the network design in terms of the number of unshared layers in the domain-
specific encoding stage and domain-specific decoding stage. As mentioned in Section 4.1 in
the main text, we empirically split the first (resp., last) L layers in encoder (resp., decoder)
into the first (resp., third) stage. Therefore, we also investigate the impact of hyper-parameter
L, and the results are also reported in Table 1. When we increase L to 5, the performance
is degraded, since it hampers the useful information sharing in the second stage. In addi-
tion, when we decrease L to 3, the performance is also degraded, possibly because it brings
difficulty in aligning the extracted features from two domains. We also explore the extreme
cases where all the encoder or decoder layers are shared across domains. Setting L of Er

(resp., Dr) to 0 means sharing the entire encoder (resp., decoder). The performances in both
cases are significantly dropped. This is because the input space and output space for image
harmonization are the same in each domain but different across domains. Simply sharing the
entire encoder or decoder will hurt the cross-domain transfer.
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Figure 6: Impact of hyper-parameters, including the margin m in Eqn. 5 and trade-off pa-
rameters λadv, λ rd

sty, and λ rl
sty in Eqn. 6 in the main text. The results are tested onDrl

te,n and the
gray dotted line indicates the default value of each hyper-parameter.

3.3 Hyper-parameter Analyses

We investigate the impact of four hyper-parameters: the margin m in Eqn. 5 and trade-off pa-
rameters λadv, λ rd

sty, and λ rl
sty in Eqn. 6 in the main paper. In Figure 6, we plot the performance

on Drl
te,n by varying each hyper-parameter while keeping the other hyper-parameters fixed. It

can be seen that our method is robust with hyper-parameters in reasonable ranges (i.e., m in
range [2−2,22], λadv and λ rd

sty in range [10−3,1] and λ rl
sty in range [5×10−4,5×10−1]).

4 Training Data Analyses
In the dataset construction, to ensure the diversity, we collect 30 3D scenes to cover various
virtual environments and define 10 representative styles to cover the majority of the day
(we do not sample the whole night since there is little variation when it is totally dark) and
3 representative weather. Note that each style covers a range of illumination intensity and
direction. To investigate the influence of diversity of constructed RdHarmony, we explore
the performance variance by using different numbers of 3D scenes and styles. To be specific,
for 3D scenes, we use the full set ofDrl

tr,b and a subset ofDrd
tr,n (i.e.,Drd

tr,n(sub)) which belongs
to a subset of 30 scenes. Similarly, for styles, we use Drl

tr,b and Drd
tr,n(sub) which contains a

subset of 10 styles. The results are shown in Figure 7(a) and Figure 7(b). From Figure 7(a),
we can observe that the performance grows better when using more scenes. As the number
of 3D scenes increases up to 30, we can also observe a trend in convergence. Since for each
3D scene we set 50 camera viewpoints to shot 2D scenes, an increase in 3D scene numbers
leads to a much larger increase in 2D scene numbers, which makes the dataset more and
more diverse. From Figure 7(b), we have a similar observation. When using fewer styles,
since it could not cover both time-of-the-day and weathers well, the performance is inferior.
When the number of styles increases to 10, the performance is also improved and getting
stable at a superior level. Based on such observation, we use all 30 3D scenes and 10 styles
in all experiments which use Drd

tr,n.
In the experiments in the main paper, we use 65k rendered training images with “hu-

man” category in Drd
tr,n. Here, we explore the performance variance when using different
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(a) Train on different numbers of scenes.
Test on Drl

te,n.
(b) Train on different numbers of styles.
Test on Drl

te,n.

(c) Train on Drl
tr,b +Drd

tr,n(sub). Test on
Drl

te,n.
(d) Train on Drl

tr,b +Drd
tr,n(sub). Test on

Drl
te,b.

(e) Train on Drl
tr,b + Drl

tr,n(sub) with and
without Drd

tr,n. Test on Drl
te,n.

(f) Train on Drl
tr,b + Drl

tr,n(sub) with and
without Drd

tr,n. Test on Drl
te,b.

Figure 7: Top row: training with a subset of 10 styles and 30 3D scenes. Mid row: training
with a subset of Drd

tr,n (i.e., Drd
tr,n(sub)) and the full set of Drl

tr,b. Bottom row: training with a
subset of Drl

tr,n (i.e., Drl
tr,n(sub)) and the full set of Drl

tr,b with and without the full set of Drd
tr,n.

numbers of rendered training images. Specifically, we use the full set of Drl
tr,b and a sub-

set of Drd
tr,n (i.e., Drd

tr,n(sub)) with various numbers of rendered training images to train our
CharmNet, and evaluate the model on both Drl

te,n and Drl
te,b. As shown in Figure 7(c) and

Figure 7(d), the performance is improved with an increasing size of Drd
tr,n(sub). Though the

performance growth slows down when the size approaches 65k, the best performance is still
obtained under the full set ofDrd

tr,n. Note that introducing more rendered training images will
bring marginal improvement yet higher computational cost, so we use 65k rendered training
images by default.

Besides, we explore another experimental setup, where real training set has inadequate
number of examples from novel category. It is very common that the real training set has
a few yet insufficient examples for certain categories, in which case we can enrich the real
training set with rendered images from these categories. Specifically, we use the full set of
Drl

tr,b and a subset ofDrl
tr,n (i.e.,Drl

tr,n(sub)) with various numbers of real training images from
novel category to train the iDIH [7] backbone. In addition, for each size of Drl

tr,n(sub), we
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Figure 8: Example results generated by different baselines and our method on Drl
te,b. From

left to right, we show the input composite real image, ground-truth real image, as well as
the harmonized images generated by iDIH [7] backbone, CUT [6], dataset fusion, and our
CharmNet. The foregrounds are outlined in red.

also augment the training set with the full set of Drd
tr,n to train our CharmNet. The trained

models are evaluated on both Drl
te,n and Drl

te,b for comparison. The results are shown in Fig-
ure 7(e) and Figure 7(f), from which we have three observations. Firstly, no matter using
rendered images or not, increasing the size of Drl

tr,n(sub) will bring consistent performance
improvement. Secondly, with a specific size of Drl

tr,n(sub) (e.g., 5k), using rendered train-
ing images Drd

tr,n from novel category could boost the performance. Thirdly, when the size
of Drl

tr,n(sub) is small, the performance gain brought by Drd
tr,n and our CharmNet is signifi-

cant, which demonstrates that auxiliary rendered images are especially helpful when the real
training set is short of real images from novel categories.

5 Qualitative Analyses on Base Categories

In Section 5.3 in the main text, we observe that our CharmNet not only boosts the perfor-
mance on novel category, but also significantly enhances the performance on base categories.
Therefore, given a composite real image from Drl

te,b, we also provide the harmonization re-
sults generated by iDIH [7] (row 4 in Table 2 in the main text), CUT [6], dataset fusion, and
our CharmNet for comparison. As shown in Figure 8, harmonization results of our Charm-
Net are more plausible and closer to the ground-truth real images. It could be observed
that even if the foreground is not “human", the foreground style could be well-adapted to
the background style, which indicates that the cross-domain style knowledge transfer is also
useful for cross-category harmonization. This observation also demonstrates the potential of
using rendered images for image harmonization task.
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Figure 9: Example results generated by iDIH upper bound and our method. The top two rows
are images from Drl

te,n and the bottom two rows are images from Drl
te,b. From left to right,

we show the input composite real image, ground-truth real image, as well as the harmonized
images generated by the upper bound and our CharmNet. Foregrounds are outlined in red.

6 Comparison between Our CharmNet and the Upper
Bound

In Table 2 in the main text, our CharmNet outperforms all the domain adaptation baselines
and achieves a closer performance to the iDIH [7] trained with both Drl

tr,n and Drl
tr,b, which

serves as an upper bound. Therefore, we sample real test images from both Drl
te,n and Drl

te,b
and show the ground-truth real images as well as the harmonized results of our CharmNet
and the upper bound in Figure 9. It can be observed that our CharmNet could generate
harmonious results close to the upper bound for both novel and base categories, which
demonstrates the efficacy of our cross-domain harmonization method.

7 Results on Real-world Composite Images with Human
Foregrounds

In practice, image harmonization is expected to tackle with real-world composite images,
whose foreground is cut from one image and pasted on another background image. In such a
scenario, there are no corresponding ground-truth images, so it is infeasible to evaluate model
performance quantitatively. Following [2, 3, 8], we conduct user study on 46 real-world
composite images with human foregrounds which are selected from 99 real-world composite
images released by [8], and compare the harmonized results generated by iDIH [7] (row 4
in Table 2 in the main text), CUT [6], dataset fusion, and our CharmNet using subjective
evaluation.

Specifically, for each real-world composite image, we could obtain five images {Ii|5i=1}
including itself and four harmonized outputs generated by four above-mentioned methods.
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Method Input composite iDIH [7] CUT [6] dataset fusion CharmNet
B-T score↑ -1.191 0.250 0.137 0.326 0.479

Table 2: B-T scores of different methods and our CharmNet on 46 real-world composite
images with human foregrounds.

# 1 2 3 4 5

Training data - Drl
tr,b

Drd
tr,n(H)

& Drl
tr,b

Drd
tr,n

& Drl
tr,b

Drl
tr,n

& Drl
tr,b

Drl
te,n(Cake)

fMSE↓ 1293.83 439.33 465.49 425.63 391.74
PSNR↑ 29.72 33.93 33.71 34.07 34.43

Drl
te,n(Bottle)

fMSE↓ 1604.52 661.81 656.73 626.48 622.39
PSNR↑ 32.78 35.69 35.83 36.01 36.05

Drl
te,n(Motorcycle)

fMSE↓ 936.30 326.49 322.99 315.62 285.76
PSNR↑ 32.28 35.91 35.94 36.07 36.56

Drl
te,n(Cow)

fMSE↓ 921.92 411.46 401.94 374.70 382.79
PSNR↑ 34.40 37.36 37.42 37.53 37.80

Drl
te,n(Couch)

fMSE↓ 1565.55 575.16 563.49 531.70 504.99
PSNR↑ 29.66 33.09 33.41 33.79 33.81

Table 3: Results of CharmNet trained on various training data and tested onDrl
te,n. “-" denotes

metrics directly tested on composite real images. Drd
tr,n(H) denotes rendered training images

from “human” category. Note that column 5 using real training images Drl
tr,n from novel

category serves as the upper bound.

Then we can construct image pairs (Ii,I j) by randomly selecting two images from {Ii|5i=1}.
Based on 46 real-world composite images with human foregrounds, we could construct abun-
dant image pairs for user study. Then we invite 13 users to participate in the study. We ask
each user to see one image pair each time and pick out the more harmonious image in the pair.
Finally, we collect 5980 pairwise results and employ the Bradley-Terry (B-T) model [1, 5]
to obtain the overall ranking of all methods. As reported in Table 2, our CharmNet achieves
the highest B-T score and once again outperforms other baselines.

Besides, we exhibit some example results of real-world composite images with human
foregrounds used in our user study. We compare the real-world composite images with har-
monization results generated by iDIH [7] (row 4 in Table 2 in the main text), CUT [6], dataset
fusion, and our CharmNet. As shown in Figure 10, our method is capable of generating more
favorable and satisfactory results than other methods.

8 Experiments on More Novel Categories
In this paper, we mainly take “human" as the example novel category to demonstrate the
effectiveness of our CharmNet. In this section, we conduct experiments on more novel
categories to show the generalization ability of our method. As mentioned in Section 1.3, we
extend our RdHarmony dataset to 5 more categories (“bottle”, “cake”, “motorcycle”, “cow”,
and “couch”) from 5 different super-categories. Each category has 9,000 pairs of composite
rendered images and ground-truth rendered images. Next, we conduct experiments by using
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Figure 10: Example results generated by different baselines and our method on real-world
composite images with human foregrounds. From left to right, we show the input real-world
composite image and the harmonized results generated by iDIH [7] backbone (row 4 in Table
2 in the main paper), CUT [6], dataset fusion, and our CharmNet.
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Figure 11: Example results on 5 more novel categories. From top to bottom, we show one
example from “bottle”, “motorcycle”, “cow”, “couch”, and “cake” category respectively.
From left to right, we show the input composite real image, ground-truth real image, as
well as the harmonized images generated by iDIH [7] backbone, and our CharmNet. The
foregrounds are outlined in red.

these 5 categories as example novel categories one by one and the procedure is basically the
same as that with “human" novel category. By taking “bottle" as an example novel category,
we treat the other categories as base categories. The training set (Drd

tr,n & Drl
tr,b) and the test

sets (Drl
te,n and Drl

te,b) of “bottle” novel category are obtained following the same procedure
as those of “human” novel category in the main text. Our training set consists of the novel
training set Drd

tr,n with rendered images from “bottle" category and the base training set Drl
tr,b

with real training images from other categories. We evaluate on the novel test set Drl
te,n with

real test images from “bottle" category. The results of this setting are reported in column 4
in Table 3. We compare with the results only using base training set Drl

tr,b (column 2). To
prove that within-category cross-domain transfer is more effective than cross-category cross-
domain transfer, we also replace the novel training set Drd

tr,n with equal number of rendered
images from “human" category (9,000 images from RdHarmony) and report the results in
column 3. Finally, we report the upper bound results using both base training set Drl

tr,b and
real training images from “bottle" category Drl

tr,n in column 5.
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Figure 12: A sample of failure case of our CharmNet.

By comparing column 4 and column 2, we can see that using rendered training images
from the target novel category can significantly boost the performance, which shows that our
method is applicable to other novel categories as well. Based on the results in column 3, we
can see that using rendered images from another category (“human") can generally improve
the performance but the performance gain is much smaller and even negative (e.g., “cake"),
compared with the performance gain (column 4 v.s. column 2) using rendered images from
the target novel category, which proves that within-category cross-domain transfer is more
effective than cross-category cross-domain transfer. Despite the performance gap between
column 4 and the upper bound (column 5), our method has shown great potential to bridge
the gap between real images and rendered images on all 5 novel categories.

We also show the harmonization results of both iDIH backbone and our CharmNet in
Figure 11, which shows that our method can generate more visually appealing results closer
to the ground-truth after utilizing the rendered images from the target novel category.

9 Limitations

In the experiment, we observe that our CharmNet might encounter failures with the compos-
ite foreground is overexposed. For example, in Figure 12, the brim in the input composite
image is overexposed. After harmonization, the result of our CharmNet may still be kind-of
overexposed.
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