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Abstract

Pose estimation is usually tackled as either a bin classification or a regression prob-
lem. In both cases, the idea is to directly predict the pose of an object. This is a non-trivial
task due to appearance variations between similar poses and similarities between dissim-
ilar poses. Instead, we follow the key idea that comparing two poses is easier than di-
rectly predicting one. Render-and-compare approaches have been employed to that end,
however, they tend to be unstable, computationally expensive, and slow for real-time ap-
plications. We propose doing category-level pose estimation by learning an alignment
metric in an embedding space using a contrastive loss with a dynamic margin and a
continuous pose-label space. For efficient inference, we use a simple real-time image
retrieval scheme with a pre-rendered and pre-embedded reference set of renderings. To
achieve robustness to real-world conditions, we employ synthetic occlusions, bounding
box perturbations, and appearance augmentations. Our approach achieves state-of-the-
art performance on PASCAL3D and OccludedPASCAL3D and surpasses the competing
methods on KITTI3D in a cross-dataset evaluation setting. The code is currently avail-
able at https://github.com/gkouros/contrastive-pose-retrieval.

1 Introduction
Estimating the pose of a 3D rigid object is a fundamental task in numerous computer vision
applications. For instance, a self-driving vehicle must be able to estimate the pose of other
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Figure 1: Using a properly learned metric, all it takes to estimate the pose of an object with
state-of-the-art accuracy is a simple retrieval scheme that finds the most similar encoded ren-
dering in a database. Two ResNet-50 encoders Ec and Er are jointly trained in a contrastive
manner to learn the mapping of query camera images and reference renderings to a feature
space where their feature distance is proportional to their geodesic/pose distance. To ensure
fast online inference after training, the reference set is encoded offline.

road users in its surroundings in order to navigate safely without endangering itself or oth-
ers. Deep learning has revolutionized such pose estimation tasks especially for challenging
monocular settings [1, 3, 10, 13, 15, 44, 45] compared to stereo [4, 5, 8, 19, 35] or RGB-
D [28, 32] settings that leverage 3D information from their inputs. Two ongoing problems
in the monocular setting are how to best extract 3D information from 2D image inputs and
how to achieve real-time operation and robustness even in complex, cluttered and occluded
real-world scenes.

Previous methods approach pose estimation as either a classification [33], regression
[20, 30, 39, 41] or optimization problem [1, 3, 15]. Classification and regression have to
directly predict the pose as either belonging to a bin or as a set of continuous values. On
the other hand, optimization methods such as render-and-compare approaches iteratively
optimize the pose. Comparing two images with regard to their pose can be considered a
much easier task to learn. Nevertheless, such an iterative optimization approach, although
accurate, may be too slow for real-time category-level pose estimation.

In this work, we propose a multimodal contrastive learning framework for extracting dis-
criminative features from real-world images and renderings that can be used for comparing
the two images with regard to their poses. Poses in this work refer to the 3D orientation of the
camera with respect to an object expressed with the azimuth, elevation, and in-plane rotation
angles. Rather than following a slow iterative approach similar to render-and-compare meth-
ods [1, 3], we utilize a common nearest neighbour retrieval scheme that compares the feature
embedding of a query image with a reference set of embeddings from rendered objects in
various poses. We also increase robustness to complex and cluttered scenes by augment-
ing training images with appearance variations, bounding box perturbations, and synthetic
occlusions. Our main contributions can be summarized as follows:

• We propose a simple yet effective category-level pose retrieval framework based on
learning discriminative features using contrastive learning with a dynamic margin.

• We show that strong data augmentation can enhance a simple pose estimation archi-
tecture to outperform more complex ones.
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• We report state-of-the-art results on PASCAL3D and OccludedPASCAL3D, as well
as superior cross-dataset performance on KITTI3D against the evaluated competing
methods.

2 Related Work
Monocular pose estimation can be described as an ill-posed problem due to the lack of 3D
information despite the fact that good empirical results have been obtained. Recovering 3D
information is usually accomplished through either monocular depth prediction [3, 13, 18]
or by incorporating prior hypotheses about the objects such as shape priors for template
matching [1, 15, 43, 45] in render-and-compare or image retrieval settings. In this work, we
utilize prior shape hypotheses in the form of CAD models for category-level pose estima-
tion. We specifically target category-level methods to achieve a good trade-off between ac-
curacy, generalization, and robustness to occlusions and clutter compared to instance-based
and category-agnostic methods.

In the scope of render-and-compare approaches, RePose [15] runs faster than real-time
by optimizing the pose of an object with learned deep textures, but is applicable only at the
instance-level. Beker et al. [3] and Wang et al. [35] propose render-and-compare methods
for estimating the pose and shape of cars using photometric, depth, or silhouette comparison,
but without achieving real-time performance. NeMo [1], on the other hand, uses a generative
neural mesh model and contrastive learning to first learn discriminative features that distin-
guish objects from occlusions and background clutter before optimizing the pose through a
render-and-compare scheme for approximately 8 seconds per object. To avoid the overhead
of render-and-compare optimization, we choose a simple yet efficient image retrieval setting.

Retrieval-based methods rely on a good comparison metric and deep metric learning with
contrastive [6] or triplet-like [29] losses has been instrumental towards that end. Wohlhart
and Lepetit [37] first proposed to use a triplet-like loss to optimize a CNN feature extractor
for instance-level pose estimation tasks based on nearest neighbour retrieval. Zhakarov et
al. [43] augmented the triplet-like loss with a dynamic margin that considers both the object
instance and the pose distance between anchor/positive and negative samples. All afore-
mentioned methods, however, discretize the pose space into bins with a negative impact on
accuracy. Balntas et al. [2] incorporated a regression loss term during training that further
improved performance. Papaioannidis and Pitas [25] added a regression loss term as well
that enabled direct pose regression instead of slow nearest neighbour search. PoseContrast
[40] is trained with a loss function, combining classification, regression, and contrastive loss
terms, on real data with pose-aware augmentations and without prior geometry knowledge.
In this work, we propose a simple contrastive loss with a dynamic margin and a continu-
ous pose space achieved by choosing positive and negative pairs and optimizing according
to pose distance rather than binning. In our case, each pair consists of a real image (an-
chor) and a rendering of a CAD model (positive/negative), for which we jointly train two
individual feature extractor CNNs.

Achieving robustness to foreground occlusions and background clutter usually requires
complex architectures and loss functions. For instance, NeMo [1] employs contrastive learn-
ing to learn how to distinguish between object features and background clutter or foreground
occlusions. In a different approach, Sarandi et al. [31] propose to augment input images with
synthetic occlusions to increase robustness in human pose estimation tasks. In this work, we
follow the same approach and incorporate a synthetic occlusion augmentation scheme for

Citation
Citation
{Beker, Kato, Morariu, Ando, Matsuoka, Kehl, and Gaidon} 2020

Citation
Citation
{He and Soatto} 2019

Citation
Citation
{Kong, Liu, Hu, Fang, and Sun} 2020

Citation
Citation
{Angtian, Kortylewski, and Yuille} 2021

Citation
Citation
{Iwase, Liu, Khirodkar, Yokota, and Kitani} 2021

Citation
Citation
{Zakharov, Kehl, Planche, Hutter, and Ilic} 2017

Citation
Citation
{Zhou, Karpur, Luo, and Huang} 2018

Citation
Citation
{Iwase, Liu, Khirodkar, Yokota, and Kitani} 2021

Citation
Citation
{Beker, Kato, Morariu, Ando, Matsuoka, Kehl, and Gaidon} 2020

Citation
Citation
{Wang, Yang, Stückler, and Cremers} 2020{}

Citation
Citation
{Angtian, Kortylewski, and Yuille} 2021

Citation
Citation
{Chopra, Hadsell, and LeCun} 2005

Citation
Citation
{Schroff, Kalenichenko, and Philbin} 2015

Citation
Citation
{Wohlhart and Lepetit} 2015

Citation
Citation
{Zakharov, Kehl, Planche, Hutter, and Ilic} 2017

Citation
Citation
{Balntas, Doumanoglou, Sahin, Sock, Kouskouridas, and Kim} 2017

Citation
Citation
{Papaioannidis and Pitas} 2020

Citation
Citation
{Xiao, Du, and Marlet} 2021

Citation
Citation
{Angtian, Kortylewski, and Yuille} 2021

Citation
Citation
{Sárándi, Linder, Arras, and Leibe} 2018



4KOUROS ET AL.: CATEGORY-LEVEL POSE RETRIEVAL WITH CONTRASTIVE FEATURES

the pose estimation of 3D rigid objects rather than humans.

3 Method

3.1 Learning Discriminative Pose Features
The main idea in deep metric learning is to optimize a high-dimensional embedding feature
space or manifold so that samples are pulled together or pushed apart depending on whether
they belong to the same class or not. This task was first accomplished using the Contrastive
Loss [6] which is defined as

L=
1

2N

N

∑
i=1

[
(1− yi) || f1,i − f2,i||22 + yi max(0, m−|| f1,i − f2,i||22)

]
, (1)

where N is the batch size or number of sample pairs, m is the margin, f is the embed-
ding/encoding function, and yi is a label that is 1 if the pair is positive and 0 if negative.

Applying deep metric learning for pose estimation requires discretizing the pose space
and assigning the pose labels to bins as in [37, 43]. However, this means that slightly differ-
ent poses might fall in different bins and thus the network would be encouraged to separate
them in feature space, which would negatively impact generalization to unseen poses. Conse-
quently, similar to the Triplet-like Dynamic Margin Loss [43], we employ a dynamic margin
that is proportional to the geodesic pose distance between two samples. In contrast to [43],
we train our models for pose estimation on the category-level rather than the instance-level,
and avoid the discretization of the pose-label space that negatively impacts accuracy. While
they use the discretized pose labels to determine positive and negative sample pairs, we pro-
pose a continuous pose-label space and determine positive and negative pairs by applying a
threshold on the pose distance. As a result, we redefine the Contrastive Loss from Equation 1
to our Contrastive Pose Loss expressed as

L=
1

2N

N

∑
i=1

[
(1−yi) max(0, || f c

1,i− f r
2,i||22−m∆θ)+yi max(0, m∆θ −|| f c

1,i− f r
2,i||22)

]
, (2)

where ∆θ = 2 cos−1(|qi ·q j|) denotes the geodesic distance between two poses expressed as
quaternions qi,q j. Furthermore, f c and f r denote the embedding functions of encoders Ec
and Er, respectively.

3.2 Sampling and Mining
According to numerous works [11, 14, 23, 27, 29, 36, 42], Deep Metric Learning perfor-
mance is heavily influenced by the selection of samples in a mini-batch during training and
thus a sophisticated scheme is essential to speeding up convergence.

Datasets often suffer from imbalance, such as typical car datasets having more sedan
cars than vans, which may result in poorer performance in the latter subcategory. This can
be alleviated by a sampling scheme that weights each sample inversely proportional to the
number of occurrences of its subcategory, an idea inspired by the Focal Loss [21]. In ad-
dition, for every sample already chosen for a batch, the sampling scheme aims to include
N ≥ 1 additional samples with a similar pose (e.g. less than 5◦ difference) because they are
more likely to have a small feature distance that needs to be optimized.
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(a) RGB (b) Silhouette (c) Depth Map (d) Normals Map (e) Triplet Map
Figure 2: Five types of renderings that were evaluated for pose estimation.

We also designed a pose-aware miner that looks for pairs of samples violating the pose
margin, resulting in higher losses and thus more efficient optimization. The sampler feeds the
miner a mini-batch of N indices corresponding to N samples composed of a camera image
and its rendered counterpart. All possible positive and negative pairs are constructed based
on a threshold (e.g. 5◦), of which all pairs that violate the pose margin are used to calculate
the loss. The rest are dropped since they do not offer any value to the optimization.

3.3 Rendering
In contrast to NeMo [1] and similar to [43], we do not use a 3D generative model for pro-
ducing the renderings, but rather employ a more conventional approach of generating 2D
mesh renderings, silhouettes, surface normal maps, depth maps, or even multi-channel RGB-
depth-normal combinations that were inspired from [10] and which we call triplets. It is our
intuition that using such feature representations, as illustrated in Figure 2, preserves per-
spective information vital to pose estimation tasks as opposed to the 3D generative model
used by NeMo. Rather than generating a set of renderings for the entire viewing sphere, we
create a rendering database by generating one rendering per sample in the training set thus
ensuring at least one positive per sample. This approach requires less space and less time for
inference while avoiding the need to find a trade-off between discretization error, the size of
the database, and inference time. Moreover, this naturally reflects the prior distribution over
the viewing sphere.

3.4 Robustness to Occlusions
To increase robustness to occlusions and background clutter, we use data augmentation with
synthetic occlusions [31] produced from PASCAL VOC 2012 [7]. This involves segmenting
objects from PASCAL VOC to create a template set of occluders from 20 object categories.
An input image is then augmented with one to eight randomly selected occluders which
are visually, spatially, and geometrically augmented. When training with a specific object
class we naturally filter out that class from the occluder set to avoid having objects from that
class occluding the actual object of interest. Finally, for tuning purposes we use a tunable
occlusion scale socc that is multiplied with a random resize factor x ∼U [0,1] to produce the
resize factor for a random occluder

fx = fy = socc x, (3)

where fx and fy are the resizing factors for the horizontal and vertical dimensions, respec-
tively. Figure 3 illustrates occlusion augmentations and the effect of socc.

3.5 Robustness to Bounding Box Noise
Throughout the experiments we assume known scale and center of the objects similar to
NeMo [1]. Practically, this is not realistic and although NeMo implies some basic toler-
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(a) socc = 0.25 (b) socc = 0.5 (c) socc = 0.75 (d) socc = 1.0
Figure 3: Examples of synthetic occlusions for various scale factors. For examples of real
occlusions we refer the reader to Figure 3 in the supplementary material.

(a) IoU ≥ 0.0 (b) IoU ≥ 0.25 (c) IoU ≥ 0.5 (d) IoU ≥ 0.75 (e) IoU = 1.0
Figure 4: Artificial bounding box noise with a lower boundary on IoU. Green denotes the
original image borders and red denotes randomly perturbed bounding boxes.

ance to center/scale perturbations, it is designed in a way that works optimally with adequate
alignment between camera images and renderings. In order to avoid this restriction we pro-
pose augmenting training samples with random bounding box noise with a lower boundary
on IoU. To define this type of noise we express the deviation of the bounding box corners as
a function of the lower IoU boundary. If w and h are the width and height of the bounding
box and n is the maximum horizontal and vertical corner deviation in pixels, then

IoUmin =
(w−2n)(h−2n)

wh
. (4)

By solving the quadratic equation we can calculate the maximum pixel deviation n as a
function of IoUmin via the equation

n =
h+w−

√
(h+w)2 −4whβ

4
, (5)

where β = 1− IoUmin is the noise scale parameter used in the experiments. Figure 4 presents
a few examples of our bounding box noise scheme for different IoU lower boundaries.

3.6 Inference via Pose Retrieval
After jointly training the encoders Ec and Er, we can predict poses through a simple image
retrieval scheme, as shown in Figure 1. Our inference framework requires an offline step
of generating a reference set of renderings which need to be embedded using encoder Er
and stored for online inference. Inferring the pose is then basically a two-step-approach
composed of encoding a query image with encoder Ec, calculating the L2 distance of the
query embedding to all feature embeddings in the stored reference set, and finally finding
the nearest neighbour, whose label corresponds with our predicted pose.

There are two main limitations with this approach. First, inference requires discretization
to a set of sampled orientations, which can be either the orientations that are present in the
training set or the orientations in a generated reference set that introduces a tradeoff between
discretization and inference speed. In the end, we used the first approach to ensure fast
training and inference speed. Second, comparing an encoded query image against a reference
set introduces a delay not present in classification or regression approaches. Training a
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regression layer on top of the Ec encoder, similar to [2, 40] would potentially eliminate both
issues.

4 Experiments

4.1 Experimental Setup

Our framework is developed using PyTorch [26], PyTorch Metric Learning [24], and we also
use PyTorch3D [16] for the generation of the renderings. We jointly train two ResNet50
[12] encoders Ec and Er as shown in Figure 1. MLP heads are used to further reduce the
dimensionality of the feature space from 2048 to 512. Each model was trained on an NVidia
Titan V GPU with 12GB of memory for approximately 2-3 days depending on the object
category and subsequent dataset size. For evaluation, we use the test set images as the query
set and the training renderings as the reference set.

We train with a batch size of 32 sample pairs for 1000 epochs using the Adam Optimizer
[17] with a learning rate of 10−4 for the ResNet50 encoders and 10−3 for the MLP heads. A
weight decay equal to 5 ·10−4 is used for both the backbone and MLP head. The embedding
size is set to 512 and the loss margin is set to m = 1. For sampling and mining we use a
positive/negative threshold t∆θ = 5◦. Finally, unless stated otherwise, we use βtrain = 0.1
and socc = 0.5. To make a more fair evaluation, we train with occlusions produced from
PASCAL VOC 2012, and not from MS-COCO [22] as in OccludedPASCAL3D. At the same
time, we intentionally use smaller occluders compared to the L1-L3 sets as can be observed
by comparing Figure 3 from this text and Figure 1 from the supplementary material.

We evaluate our approach on PASCAL3D [38], its synthetically occluded counterpart
OccludedPASCAL3D [34], and KITTI3D [9]. Unless stated otherwise, we use surface nor-
mal maps in all experiments. An evaluation of the various rendering types is included in
the supplementary material. Similar to [1] we assume known center and distance for all
samples, however, we train to achieve robustness to bounding box perturbations and avoid
over-reliance on 2D detection accuracy by employing training time bounding box augmen-
tations. As a result, our models learn to disregard distance information when comparing
camera images and renderings and instead solely focus on pose information. We further
increase the training data variance through horizontal flipping, color jittering, gaussian blur-
ring, bounding box perturbations, and synthetic occlusions.

We compare the performance of our approach against a category-agnostic classifier Res-
50-A and a category-specific classifier Res50-S from [1] as well as three state-of-the-art
competing methods, namely StarMap [45], NeMo [1], and PoseContrast [40]. For NeMo,
in particular, we compare against all three variations termed as NeMo, NeMo-MultiCuboid
(NeMo-M), and NeMo-SingleCuboid (NeMo-S). We follow the exact same preprocessing
and evaluation methodology as in NeMo and thus borrow their results and the results for
Res50-A, Res50-S, and StarMap. PoseContrast, however, was originally trained with more
data, so we had to retrain it with the same amount of data as the rest of the methods to ensure
a fair comparison. Similar to StarMap and NeMo, we perform the evaluation using three
metrics, namely pose accuracy with a threshold of 10◦ (ACC π

18
) and 30◦ (ACCπ

6
), as well as

Median Error. Furthermore, we evaluate the inference speed of our approach and compare
it against the best competing methods, namely NeMo and PoseContrast.
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Categ. ACCπ

6
↑ ACC π

18
↑ MedErr ↓

aware L0 L1 L2 L3 L0 L1 L2 L3 L0 L1 L2 L3
Res50-A † 88.1 70.4 52.8 37.8 44.6 25.3 14.5 6.7 11.7 17.9 30.4 46.4
Res50-S † ✓ 87.6 73.2 58.4 43.1 43.9 28.1 18.6 9.9 11.8 17.3 26.1 44.0
StarMap † 89.4 71.1 47.2 22.9 59.5 34.4 13.9 3.7 9.0 17.6 34.1 63.0
NeMo † ✓ 84.1 73.1 59.9 41.3 60.4 45.1 30.2 14.5 9.3 15.6 24.1 41.8
NeMo-M † ✓ 86.7 77.2 65.2 47.1 63.2 49.9 34.5 17.8 8.2 13.0 20.2 36.1
NeMo-S † ✓ 86.1 76.0 63.9 46.8 61.0 46.3 32.0 17.1 8.8 13.6 20.2 36.5
PoseCon 90.8 76.2 59.3 39.7 67.2 46.4 28.1 12.7 7.1 12.6 23.1 45.5
Ours ✓ 92.3 85.7 72.7 49.8 72.2 56.7 38.9 17.9 6.6 9.7 16.0 37.9

Table 1: Evaluation against the state-of-the-art on PASCAL3D (L0) and OccludedPAS-
CAL3D (L1-L3). The results are averaged across the 12 object categories and the symbol †

denotes results taken from [1].

Occl. Method aero bike boat bottle bus car chair table mbike sofa train tv Mean
NeMo-M 76.9 82.2 66.5 87.1 93.0 98.0 90.1 80.5 81.8 96.0 89.3 87.1 86.7

L0 PoseCon. 83.7 84.0 82.5 88.9 97.7 96.7 95.3 86.9 87.2 97.1 96.7 87.8 90.8
Ours 84.4 88.1 82.5 91.7 98.7 99.2 95.9 88.8 85.6 97.0 98.0 90.0 92.3
NeMo-M 58.1 68.8 53.4 78.8 86.9 94.0 76.0 70.0 61.8 87.3 82.8 82.8 77.2

L1 PoseCon. 57.7 66.6 56.9 86.7 87.1 83.6 66.9 74.2 72.3 90.6 89.4 78.2 76.2
Ours 71.4 79.2 70.6 85.2 87.7 97.4 87.2 81.9 78.4 94.1 96.5 80.0 85.7
NeMo-M 43.1 55.7 43.3 69.1 79.8 84.5 58.8 58.4 43.9 76.4 64.3 70.3 65.2

L2 PoseCon. 38.5 51.2 39.2 81.8 69.5 61.8 49.3 57.6 56.1 74.1 82.4 61.0 59.3
Ours 54.6 54.6 55.4 68.8 71.0 91.5 66.5 67.8 57.9 84.4 93.1 67.3 72.7
NeMo-M 23.8 34.3 29.5 53.9 56.0 65.5 43.4 41.5 25.4 58.2 43.2 54.1 47.1

L3 PoseCon. 19.2 30.6 27.4 73.5 47 35.2 33.3 38.0 33.3 52.1 70.7 44.4 39.7
Ours 27.4 28.8 31.8 43.3 41.3 69.6 40.9 45.6 32.1 62.1 85.2 47.8 49.8

Table 2: ACCπ

6
per PASCAL3D category against the two best competing methods [1, 40].

4.2 Robust and Efficient 3D Pose Estimation

In Tables 1 and 2 we present our performance against the competing methods from [1, 40,
45]. The results in Table 1 are averaged over all object categories for the levels of synthetic
occlusion 0% (L0), 20-40% (L1), 40-60% (L2), and 60-80% (L3), respectively. Similar to
[1], we use a weighted average that takes into account the number of samples per object cat-
egory. Overall, our approach outperforms the competing methods across all occlusion levels
showcasing the benefit of strong data augmentation compared to complex and specialized
architectures.

In Table 3, we present our results on KITTI3D. Since the test set of KITTI3D does not
provide labels, we split the training set based on the 50-50 split proposed by [4]. NeMo-
MultiCuboid requires car type labels and StarMap requires object keypoints which are not
provided by KITTI3D, so we evaluate solely against NeMo-SingleCuboid and PoseContrast.
Even without retraining or fine-tuning on KITTI3D, our approach exhibits similar perfor-
mance as in PASCAL3D, outperforming the competing methods in the Fully-Visible (FV),
Partly-Occluded (PO) and Largely-Occluded (LO) evaluation categories. At the same time,
we demonstrate robustness to out-of-distribution occlusions considering that we trained on
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ACCπ

6
↑ ACC π

18
↑ MedErr ↓

FV PO LO All FV PO LO All FV PO LO All
NeMo-S 88.1 72.4 34.9 67.9 70.3 40.4 7.5 43.7 7.3 11.6 46.1 20.0
PoseContrast 97.8 88.5 48.6 80.6 81.6 62.4 18.6 57.5 6.6 8.6 33.0 15.0
Ours 98.1 90.0 56.1 83.4 92.8 70.6 21.0 65.3 3.2 5.4 24.8 10.2
Ours-2 97.9 90.6 66.5 86.5 94.2 74.4 34.4 70.9 2.9 5.3 15.5 7.3

Table 3: Evaluation on cars of KITTI3D without retraining or fine-tuning. Ours-2 was
trained with higher bounding box noise βtrain = 0.75 showcasing the benefit of this aug-
mentation technique to cross-dataset performance.

Figure 5: Comparison of models trained
with different levels socc of synthetic occlu-
sion and evaluated on L0-L3.

Figure 6: Comparison of models trained
with different bounding box noise levels
βtrain on perturbed L0 by βtest .

cars without same-category occlusions.

To evaluate the effect of occlusion augmentation in our approach, we trained five models
with different occlusion scales socc and evaluated them on L0-L3. As shown in Figure 5, the
higher the occlusion scale socc during training, the more robust the model becomes to higher
levels of occlusions. We also note that even on L0 the models trained with synthetic occlu-
sions outperform the ones without demonstrating robustness to real occlusions and clutter.

To evaluate the effect of bounding box augmentation we train five models with different
levels of bounding box noise and evaluate each one on increasing levels of test time augmen-
tation. Based on the graphs in Figure 6, training with bounding box augmentations leads to
increased robustness to higher βtest noise values. However, performance drops slightly for
larger βtrain values when evaluating on the unperturbed datasets (βtest = 0).

To evaluate the inference speed of our approach we count the duration of embedding a
query image and retrieving the closest neighbour. We ran this experiment on a consumer-
grade GPU, namely NVidia GTX 1050, and averaged the measurements over one thousand
runs. Our approach runs at 35 f ps or requires approximately 29ms per object instance, signif-
icantly faster than the 8-second inference of NeMo, but still almost double the 15ms inference
time of PoseContrast that uses a mix of classification and regression.

In Figure 7a, we present examples of queries with their corresponding rendered retrievals
demonstrating pose estimation accuracy and feature extraction invariant to specific CAD
models. In Figure 7b we present failure cases of queries with wrong retrievals which have an
angle error higher than 30◦. We observe that most failure cases are due to confusion between
opposite directions, same-category occlusions, rarely-seen poses, or atypical vehicles. More
examples are included in the supplementary material.
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ACCπ

6
↑ ACC π

18
↑ MedErr ↓

L0 L1 L2 L3 L0 L1 L2 L3 L0 L1 L2 L3
Ours 99.2 97.4 91.5 69.6 95.9 89.3 68.8 32.6 3.1 4.2 6.7 16.1
w/o multi-CAD 99.0 97.3 91.8 70.1 96.2 88.1 65.4 30.2 3.0 4.3 7.3 16.2
w/o data augment. 99.2 97.2 90.3 70.7 94.9 85.0 62.9 29.9 3.5 4.7 7.8 16.2
w/ same cat. occl. 99.0 97.1 90.8 68.2 95.8 87.4 64.5 28.6 3.6 4.7 7.5 17.3
w/o contin. labels 98.6 95.5 86.4 59.7 90.4 78.0 54.0 23.0 5.2 6.3 9.3 22.3
w/ Triplet Loss [43] 98.3 94.8 84.6 60.6 93.6 83.6 62.5 31.6 4.2 5.3 7.7 17.1
w/o syn. occlusions 97.8 88.3 74.9 54.6 94.7 67.8 37.7 13.8 3.2 6.9 13.3 25.9
w/o dyn. margin 36.9 36.5 35.8 33.4 25.5 19.2 13.7 7.4 57.9 56.7 53.7 50.0

Table 4: Ablation study results on cars of PASCAL3D L0-L3

(a) Successful retrievals (∆θ < 10◦). (b) Failed retrievals (∆θ > 30◦).
Figure 7: Examples of nearest neighbour retrievals.

4.3 Ablation Study

We conducted an ablation study in which we evaluated our approach for seven distinct cases,
as presented in Table 4. First, we trained with only a single CAD model arbitrarily chosen
as the sedan for the car category. Second, we trained without appearance augmentations
(color jitter, gaussian blur, horizontal flipping). Third, we evaluated our approach with same-
category occlusions. Fourth, we used discretized pose labels. Fifth, we used a Triplet loss
with a dynamic margin rather than our proposed contrastive loss. Sixth, we trained without
synthetic occlusions and in the final case, we removed the dynamic margin. In all cases we
observed a non-negligible decrease in performance.

5 Conclusion

Object Pose estimation in a monocular setting is a non-trivial task, especially when dealing
with occlusions, clutter, and appearance variations that make handcrafted approaches more
prone to error or lack of accuracy. Therefore, we propose learning a pose alignment metric
using a contrastive loss with a dynamic margin for comparing object images and renderings
with regard to their pose. We reinforce the robustness of the metric using synthetic oc-
clusions and other appearance augmentations. The metric learnt with our Contrastive Pose
Loss can be used for pose estimation in an efficient real-time image retrieval setting and
achieves state-of-the-art performance on PASCAL3D and OccludedPASCAL3D, as well as
high cross-dataset performance on KITTI3D.
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