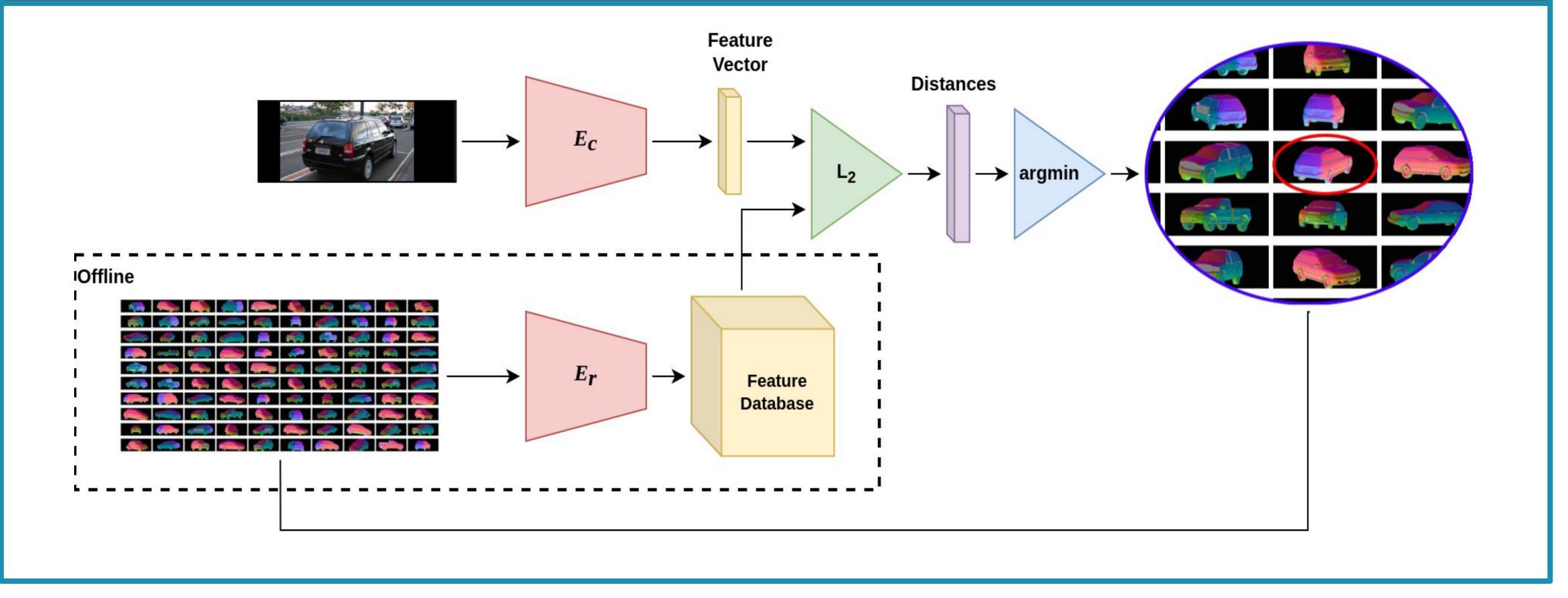
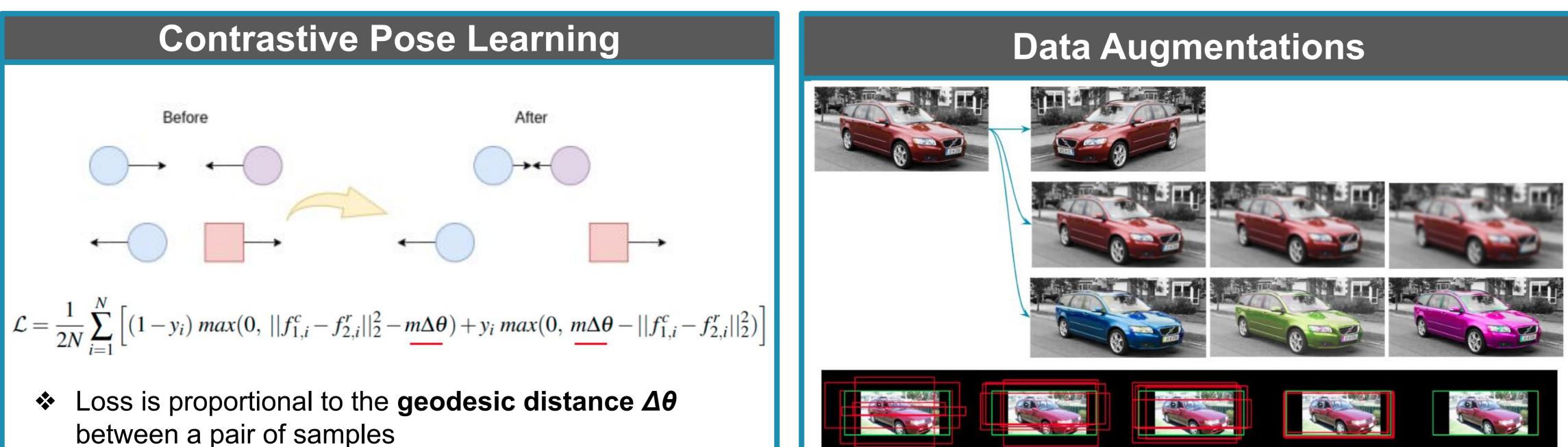
KU LEUVEN

Georgios Kouros¹, Shubham Shrivastava², Cédric Picron¹, Sushruth Nagesh², Punarjay Chakravarty², Tinne Tuytelaars¹ ¹ KU Leuven, ESAT, PSI, ² Ford Greenfield Labs




Category-Level Pose Retrieval with Contrastive Features Learnt with Occlusion Augmentation

Object Pose Estimation Architecture

The encoders *E_c* and *E_r* are trained jointly to compare real objects to renderings

Results

PASCAL3D (L0) and OccludedPASCAL3D (L1-L3)

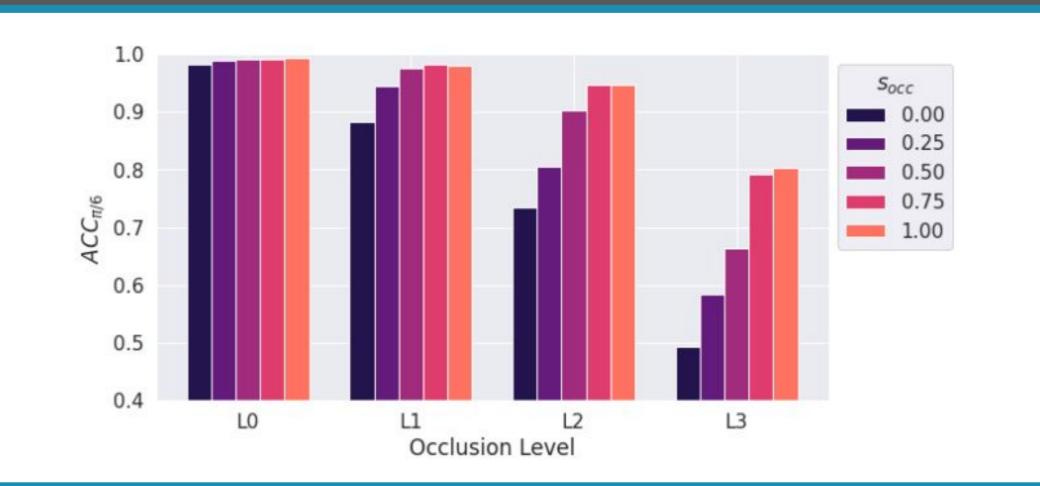
	Categ.	$ACC_{\frac{\pi}{6}}$				$ACC_{\frac{\pi}{18}}$ \uparrow				MedErr↓			
	aware	L0	L1	L2	L3	L0			L3	LO	L1	L2	L3
Res50-A [†]		88.1	70.4	52.8	37.8	44.6	25.3	14.5	6.7	11.7	17.9	30.4	46.4
Res50-S [†]	\checkmark	87.6	73.2	58.4	43.1	43.9	28.1	18.6	9.9	11.8	17.3	26.1	44.0
StarMap [†]		89.4	71.1	47.2	22.9	59.5	34.4	13.9	3.7	9.0	17.6	34.1	63.0
NeMo [†]	\checkmark	84.1	73.1	59.9	41.3	60.4	45.1	30.2	14.5	9.3	15.6	24.1	41.8
NeMo-M [†]	\checkmark	86.7	77.2	65.2	47.1	63.2	49.9	34.5	17.8	8.2	13.0	20.2	36.1
NeMo-S [†]	\checkmark	86.1	76.0	63.9	46.8	61.0	46.3	32.0	17.1	8.8	13.6	20.2	36.5
PoseCon		90.8	76.2	59.3	39.7	67.2	46.4	28.1	12.7	7.1	12.6	23.1	45.5
Ours	\checkmark	92.3	85.7	72.7	49.8	72.2	56.7	38.9	17.9	6.6	9.7	16.0	37.9

KITTI3D (Fully Visible, Partly Occluded, Largely Occluded)

	$ACC_{\frac{\pi}{6}}$ \uparrow					ACC	$\frac{\pi}{18}$		$MedErr\downarrow$			
	FV	PO	LO	All	FV	PO	LO	All	FV	PO	LO	All
NeMo-S	88.1	72.4	34.9	67.9	70.3	40.4	7.5	43.7	7.3	11.6	46.1	20.0
PoseContrast	97.8	88.5	48.6	80.6	81.6	62.4	18.6	57.5	6.6	8.6	33.0	15.0
Ours	98.1	90.0	56.1	83.4	92.8	70.6	21.0	65.3	3.2	5.4	24.8	10.2
Ours-2	97.9	90.6	66.5	86.5	94.2	74.4	34.4	70.9	2.9	5.3	15.5	7.3

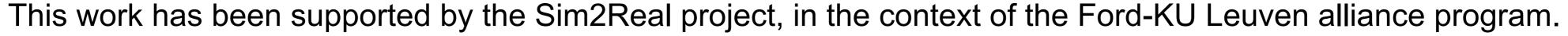
(Ours-2 is trained with stronger bounding box augmentation)

(a) $IoU \ge 0.0$ (b) $IoU \ge 0.25$ (c) $IoU \ge 0.5$ (d) $IoU \ge 0.75$ (e) IoU = 1.0



(a) $s_{occ} = 0.25$ (b) $s_{occ} = 0.5$

(c) $s_{occ} = 0.75$


(d) $s_{occ} = 1.0$

- From top-to-bottom: Horizontal flipping, gaussian blurring, color jittering, bounding box augmentation, synthetic occlusion augmentation
- Synthetic occlusions during training help the model learn to ignore foreground occlusions and background clutter

Occlusion Augmentation Evaluation

