
T. W. COSTAIN & V. A. PRISACARIU: APPROXCONV 1

Approximating Continuous Convolutions for
Deep Network Compression
Theo W. Costain
costain@robots.ox.ac.uk

Victor A. Prisacariu
victor@robots.ox.ac.uk

Active Vision Laboratory
University of Oxford
https://code.active.vision

Abstract
We present ApproxConv, a novel method for compressing the layers of a convolu-

tional neural network. Reframing conventional discrete convolution as continuous con-
volution of parametrised functions over space, we use functional approximations to cap-
ture the essential structures of CNN filters with fewer parameters than conventional op-
erations. Our method is able to reduce the size of trained CNN layers requiring only a
small amount of fine-tuning. We show that our method is able to compress existing deep
network models by half whilst losing only 1.86% accuracy. Further, we demonstrate that
our method is compatible with other compression methods like quantisation allowing for
further reductions in model size.

1 Introduction

Figure 1: Our method compresses net-
work filter weights, by approximating
them using cosine and Chebyshev series.

Deep vision models have demonstrated out-
standing performance across a range of prob-
lems from semantic segmentation of microscopy
images[32], to object detection for nature con-
servation efforts[30]. In many cases, there is
strong desire to apply these methods in compute
constrained environments, i.e. mobile devices,
and as a result the desire for space and compute
efficient CNN models is as strong as ever.

Despite this, recent works[3, 6] have seen
explosive growth in parameter count for highly
performant models, and there is no reason to ex-
pect this trend to abate soon[2].

Approaches to reduce the size and com-
pute requirements of deep models have been
the focus of significant attention. A number of
works have proposed models designed explic-
itly for efficiency[18, 20, 43], and other efforts to improve the efficiency of deep mod-
els have included methods such as low-rank factorisation[22], knowledge distillation[17],
quantisation[44], and network pruning[10, 24].

© 2022. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

Citation
Citation
{Ronneberger, Fischer, and Brox} 2015

Citation
Citation
{Norouzzadeh, Nguyen, Kosmala, Swanson, Palmer, Packer, and Clune} 2018

Citation
Citation
{Caron, Touvron, Misra, Jégou, Mairal, Bojanowski, and Joulin} 2021

Citation
Citation
{Dosovitskiy, Beyer, Kolesnikov, Weissenborn, Zhai, Unterthiner, Dehghani, Minderer, Heigold, Gelly, Uszkoreit, and Houlsby} 2021

Citation
Citation
{Brown, Mann, Ryder, Subbiah, Kaplan, Dhariwal, Neelakantan, Shyam, Sastry, Askell, Agarwal, Herbert-Voss, Krueger, Henighan, Child, Ramesh, Ziegler, Wu, Winter, Hesse, Chen, Sigler, Litwin, Gray, Chess, Clark, Berner, McCandlish, Radford, Sutskever, and Amodei} 2020

Citation
Citation
{Howard, Zhu, Chen, Kalenichenko, Wang, Weyand, Andreetto, and Adam} 2017

Citation
Citation
{Iandola, Han, Moskewicz, Ashraf, Dally, and Keutzer} 2016

Citation
Citation
{Zhang, Zhou, Lin, and Sun} 2018

Citation
Citation
{Jaderberg, Vedaldi, and Zisserman} 2014

Citation
Citation
{Hinton, Vinyals, and Dean} 2015

Citation
Citation
{Zhou, Wu, Ni, Zhou, Wen, and Zou} 2016

Citation
Citation
{Frankle and Carbin} 2018

Citation
Citation
{LeCun, Denker, and Solla} 1989

2 T. W. COSTAIN & V. A. PRISACARIU: APPROXCONV

In this work, we propose to use functional approximations to reduce the number of pa-
rameters required to fully describe a CNN layer’s filters. We re-cast conventional discrete
convolution on grids as discrete convolution on parametrised continuous functions of space.
In this way, we are able to replace the kernel weight tensor with an approximating function
that is able to exploit the structures commonly found in CNN filters. Specifically, we make
use of cosine and Chebyshev series that are able to preserve the low frequency informa-
tion that allows the networks to function, whilst minimising the effects of high frequency
information that are often exploited by adversarial attacks[45]. Our proposed method is par-
ticularly effective for larger kernel sizes, which despite falling out of favour in earlier deep
CNN work[15, 36], have recently seen a resurgence[25].

In our experiments, we show that our method is able to significantly reduce the number of
parameters in a variety of models, and unlike comparable methods[34, 40] is able to achieve
this with only a limited amount of fine-tuning. Further, we demonstrate that our approach is
complementary to other network size reduction methods such as quantisation. Compliment-
ing our method with other approaches, we are able to increase the overall reduction in total
model size with minimal further impact on accuracy.

In summary, the contributions of this work are as follows:

• A novel method to approximate kernel weights using functional approximations based
on cosine and Chebyshev series.

• A framework that allows this method to be used without completely retraining models
from scratch.

In the rest of the paper, we discuss works related and relevant to our method(Section 2),
our methodology (Section 3), our experiments and results (Section 4), before a final a dis-
cussion and the conclusion of the work (Section 5).

2 Related Work

A number of works[19, 20, 43] have attempted to reduce the size of models by designing
networks with efficiency in mind, such as MobileNets[18] which introduced depthwise con-
volutions.

Quantisation methods[7, 14, 29, 37, 44] have seen great success in reducing the memory
footprints of deep models. Quantising 32-bit floating point numbers down to 8, 4 or even
as low as 1 bit, these methods are able to drastically reduce the memory footprint of deep
models. Other works[8, 11, 39] demonstrated that non-uniform quantisation schemes, where
different layers of the network can be quantised to different numbers of bits, can further
reduce the size of the model without compromising accuracy. These non-uniform schemes
influence some of our experiments, where we employ a similar approach.

Knowledge distillation methods[17, 28, 31, 41], typically use larger (teacher) models to
guide the training of smaller (student) ones, often allowing the student models to achieve
performance parity despite their smaller size.

Network pruning methods[1, 13, 24, 26] attempt to discover redundant parameters in
deep networks. Having identified these parameters, they can then be removed either individ-
ually, yielding sparse networks, or as a group, sometimes removing whole filters or channels.
Seminal works, like [10, 27], demonstrate that it can be possible to prune networks before
training, realising the size reduction benefits for training as well as inference.

Citation
Citation
{Zhou, Hu, Han, Wang, and Duan} 2021

Citation
Citation
{He, Zhang, Ren, and Sun} 2016

Citation
Citation
{Simonyan and Zisserman} 2015

Citation
Citation
{Liu, Mao, Wu, Feichtenhofer, Darrell, and Xie} 2022

Citation
Citation
{Saldanha, Pintea, van Gemert, and Tomen} 2021

Citation
Citation
{Zamora, Vargas, Rhodes, Nachman, and Sundararajan} 2021

Citation
Citation
{Huang, Liu, Van Derprotect unhbox voidb@x protect penalty @M {}Maaten, and Weinberger} 2017

Citation
Citation
{Iandola, Han, Moskewicz, Ashraf, Dally, and Keutzer} 2016

Citation
Citation
{Zhang, Zhou, Lin, and Sun} 2018

Citation
Citation
{Howard, Zhu, Chen, Kalenichenko, Wang, Weyand, Andreetto, and Adam} 2017

Citation
Citation
{Drumond, Lin, Jaggi, and Falsafi} 2018

Citation
Citation
{Han, Mao, and Dally} 2016

Citation
Citation
{Nascimento, Fawcett, and Prisacariu} 2019

Citation
Citation
{Song, Liu, and Wang} 2018

Citation
Citation
{Zhou, Wu, Ni, Zhou, Wen, and Zou} 2016

Citation
Citation
{Elthakeb, Pilligundla, Mireshghallah, Yazdanbakhsh, and Esmaeilzadeh} 2020

Citation
Citation
{Gennariprotect unhbox voidb@x protect penalty @M {}do Nascimento, Costain, and Prisacariu} 2020

Citation
Citation
{Wang, Liu, Lin, Lin, and Han} 2019

Citation
Citation
{Hinton, Vinyals, and Dean} 2015

Citation
Citation
{Mirzadeh, Farajtabar, Li, Levine, Matsukawa, and Ghasemzadeh} 2020

Citation
Citation
{Romero, Ballas, Kahou, Chassang, Gatta, and Bengio} 2015

Citation
Citation
{Zhang, Song, Gao, Chen, Bao, and Ma} 2019

Citation
Citation
{Anwar and Sung} 2016

Citation
Citation
{Han, Pool, Tran, and Dally} 2015

Citation
Citation
{LeCun, Denker, and Solla} 1989

Citation
Citation
{Luo, Zhang, Zhou, Xie, Wu, and Lin} 2018

Citation
Citation
{Frankle and Carbin} 2018

Citation
Citation
{Malach, Yehudai, Shalev-Schwartz, and Shamir} 2020

T. W. COSTAIN & V. A. PRISACARIU: APPROXCONV 3

Low rank factorisation methods[5, 22, 33, 42] reduce both the total number of parameters
in CNN layers, as well as the number of FLOPs required to compute the outputs of the layer.
Using a variety of methods, these approaches decompose the weight tensors of layers into
a series of smaller tensors. These smaller tensors can then be convolved with the inputs
sequentially (in a fashion similar to separable filters from classical methods), yielding an
approximation of the original output.

Both methods learn parametrised functions over space, however rather than generalised
approximations, they make use of gaussian and gaussian derivative functions. Zamora et al.
[40] learns only simple classical image filters (e.g. Sobel filter) and Saldanha et al. [34]
attempt to replicate Jacobsen et al. [21] using fewer parameters. Using fractional calculus,
they are able to efficiently parametrise a family of gaussian and gaussian-derivative functions
using only 3[34] and 6[40] parameters per filter. While this approach allows for significant
parameter savings, in comparison to our proposed method, the shape of kernels that can
be learnt is substantially limited. As a result, whereas their methods require training from
scratch, our approach can be applied to pre-trained models, .

In 3D settings, dense regular grid structures are too memory intensive and so receive
little attention. Instead, much of the effort focuses on irregular data structures like point-
clouds or meshes. In these settings it becomes desirable to have a kernel function that can
vary continuously over 3D space. Similar to our method, SplineCNN[9] uses b-Splines to
generate a continuous function over space. FlexConv[12] learns a kernel weight function
based on the distance between sampled point locations and a hyperplane. Simonovsky and
Komodakis [35] use shared MLPs with edge information as input to define the kernel weight
functions.

3 Method
We begin by covering the general form of continuous convolution and how this formula-
tion can allow for network compression. Next we outline how we come to our choice of
approximation functions, before finally discussing how we apply our method to pre-trained
networks.

3.1 Continuous Convolution
In general, discrete n-dimensional convolution can be expressed in the form

x′ = ∑
xi∈N (x)

xi ×wi (1)

where N (x) represents the set of grid locations neighbouring x, and w, typically referred to
as the kernel, contains an entry for every neighbouring location. If we replace the discrete
grid in the above equation with set of locations sampled from a continuous function over
space, we can re-write the above equation as

x′(p) = ∑
pi∈N (x)

x(pi)×w(pi) (2)

where p ∈ Rn, x : Rn 7→ Rd , and w : Rn 7→ Rd . To recover simple 2D convolution with a
3×3 kernel, we can simply let p be the set of 2-vectors [(−1,−1),(−1,0),(−1,1), · · ·].

Citation
Citation
{Denton, Zaremba, Bruna, LeCun, and Fergus} 2014

Citation
Citation
{Jaderberg, Vedaldi, and Zisserman} 2014

Citation
Citation
{Sainath, Kingsbury, Sindhwani, Arisoy, and Ramabhadran} 2013

Citation
Citation
{Zhang, Zou, He, and Sun} 2015

Citation
Citation
{Zamora, Vargas, Rhodes, Nachman, and Sundararajan} 2021

Citation
Citation
{Saldanha, Pintea, van Gemert, and Tomen} 2021

Citation
Citation
{Jacobsen, Vanprotect unhbox voidb@x protect penalty @M {}Gemert, Lou, and Smeulders} 2016

Citation
Citation
{Saldanha, Pintea, van Gemert, and Tomen} 2021

Citation
Citation
{Zamora, Vargas, Rhodes, Nachman, and Sundararajan} 2021

Citation
Citation
{Fey, Lenssen, Weichert, and M{ü}ller} 2018

Citation
Citation
{Groh, Wieschollek, and Lensch} 2018

Citation
Citation
{Simonovsky and Komodakis} 2017

4 T. W. COSTAIN & V. A. PRISACARIU: APPROXCONV

This formulation has two key advantages: i) The same convolutional operation can be
used on both regular nD grids, and on arbitrary nD structures (e.g. point-clouds or meshes)
over which we can define a neighbourhood function N ; ii) Replacing the tensor w with a
carefully chosen function w(·), we can reduce the memory requirements of 2D convolutional
layers by exploiting the structures present in the tensors.

3.2 Network Compression
Our work is concerned with the second of the two advantages above: that a judicious choice
of w(·) can permit parameter savings. As has been shown by other works[24, 27] deep
networks often contain significant amounts of redundant information, and often filters that
contain low-frequency information. Accordingly, it is often possible to substantially reduce
the size of a model by removing redundant parameters[13, 16] or preserving only relatively
low-frequency structures[34].

The choice of function w(·) is primarily constrained by the number of parameters it re-
quires. As discussed previously, methods like FracSRF[34] and Fractional Filters[40] choose
efficiently parametrised gaussian and gaussian-derivatives as w(·). But these functions are
not able to approximate arbitrary functions.

Separate to these approaches, the field of functional approximation has been of interest
for over a century[38], motivated by applications ranging from solving PDEs to numerical
integration. As a result a significant body of work is concerned with using various orthog-
onal basis functions for approximations. From this corpus, we use two common families
of functions to allow our method to learn arbitrary kernel functions: cosine and Chebyshev
series.

3.3 Cosine and Chebyshev Series
Cosine and Chebyshev series are able to approximate any periodic function that satisfies
specific boundary conditions and the Dirichlet conditions. These conditions require that
the function: i) is absolutely integrable; ii) is of bounded variation; iii) has a finite number
of non-infinite discontinuities. As any discrete weight kernel can be fully described by a
piecewise linear function, it is trivial to demonstrate1 that this piecewise function satisfies
the above conditions. Further, the requirement that the function be periodic (in the case of the
cosine series) can be trivially satisfied by repeating the function at the boundaries, although
careful choice of boundary conditions and approximation interval is necessary.

Although the Fourier series is generally more well known than the cosine series, exten-
sions of the Fourier series to higher dimensions introduces a number of "cross terms" that
grow in complexity as the number of dimensions increases. An alternative is to use the sine
or cosine series, which are equivalent to the fourier series under certain conditions. Specif-
ically, for an even function, the coefficients of the sine terms go to zero leaving only cosine
terms, and vice versa for odd functions. By shifting the center of our approximation interval,
it is possible to coerce the function to behave as an even or odd function. The advantages of
the sine and cosine forms is that their extensions into higher dimensions are trivial and, for
x ∈ Rn with N harmonics, take the following (for cosine) form

ŵ(x) =
N

∑
i0=0

· · ·
N

∑
in=0

ai0···in cos(i0x) · · ·cos(iny) (3)

1We leave a complete proof as an exercise for the reader

Citation
Citation
{LeCun, Denker, and Solla} 1989

Citation
Citation
{Malach, Yehudai, Shalev-Schwartz, and Shamir} 2020

Citation
Citation
{Han, Pool, Tran, and Dally} 2015

Citation
Citation
{He, Zhang, and Sun} 2017

Citation
Citation
{Saldanha, Pintea, van Gemert, and Tomen} 2021

Citation
Citation
{Saldanha, Pintea, van Gemert, and Tomen} 2021

Citation
Citation
{Zamora, Vargas, Rhodes, Nachman, and Sundararajan} 2021

Citation
Citation
{Trefethen} 2019

T. W. COSTAIN & V. A. PRISACARIU: APPROXCONV 5

The choice of cosine over sine is motivated by concerns over boundary conditions.
Specifically, for cosine series the boundary conditions require/enforce symmetric periodic
repetition which minimises the potential for discontinuity at the boundary.

In our experiments, we also make use of the Chebyshev series as it is closely related to
the cosine series through the definition that Tn(cos(x)) = cos(nx), which conveniently yields
a very similar expression to eq. (3)

ŵ(x) =
N

∑
i0=0

· · ·
N

∑
in=0

ai0···inTi0(x0) · · ·Tin(xM) (4)

where Tn is the nth Chebyshev polynomial of the first kind, and x ∈ RM . The Chebyshev
series can have faster "convergence" (i.e. better approximation with fewer terms) than the
trigonometric series in eq. (3).

To achieve compression for a Cout,Cin,K ×K kernel, we choose ŵ to be a 2D cosine or
Chebyshev series with N “harmonics”or “orders”, where N ≤ K. Replacing a 3× 3 kernel,
with a series 2 harmonics leads to an over 50% reduction in parameters. Our experiment
show however, that 2 harmonics can be insufficient to properly approximate a 3×3 kernel.
However, for 7×7 kernels, which have seen a resurgence in recent work[25], the increased
number of harmonics permitted whilst still maintaining a reduction in parameters, can allow
for much better compression depending on the complexity of the filters in question. In our
experiments, we refer to replacing the kernel weights with a cosine series as CosConv, and
ChebConv when using a Chebyshev series.

Whilst it is not necessary to use the same number of harmonics in the x and y directions,
doing so significantly increases the hyperparameter space to be evaluated for our method. As
we are not aware of any popular or common methods that make use of anisotropic kernels,
we do not investigate differing spatial harmonics in this work. However, with an appropriate
search method, anisotropic harmonics might permit further increases in memory savings.

Also not investigated is another possibility for reducing parameter count using our method,
through variable harmonics for each filter. Although, as above, this is essentially a problem
of hyperparameter/architecture search and is outside the scope of this work.

3.4 Finding Weights
Depending on the number of harmonics used in the approximating function, there may exist a
closed form solution to find the approximation. In the case of the cosine series, this takes the
form of the discrete cosine transform. This closed form solution, however, is only possible
when choosing the same number of parameters for the approximation as for the original
weight kernel. Accordingly, when approximating the kernel weights for compression, we
use a simple iterative gradient descent optimisation to minimise the mean squared error loss

L=
1

K2

K

∑
i, j=0

(wi j − ŵ(pi j))
2 (5)

In conventional numerical approximation, the choice of “sample points” pi j is extremely
important[38]. Normally, performing approximation using Chebyshev polynomials requires
careful choice of sample points2 to avoid Runge’s phenomenon, where approximation error
at the ends of the interval increases with the number of harmonics[38]. However, in our case,

2For Chebyshev series, the Chebyshev-Gauss-Lobatto points. For cosine series, equispaced points.

Citation
Citation
{Liu, Mao, Wu, Feichtenhofer, Darrell, and Xie} 2022

Citation
Citation
{Trefethen} 2019

Citation
Citation
{Trefethen} 2019

6 T. W. COSTAIN & V. A. PRISACARIU: APPROXCONV

as we only care about the value of the approximation at the individual sample points, we can
safely ignore this phenomenon.

In our experiments, we found that the Chebyshev series was significantly more sensitive
to the initialisation of the weights before the initial approximation. For ChebConv, we found
the best results were achieved by setting the weights of the “DC” harmonics to the mean
of the kernel weights for each filter, and the weights of all higher harmonics are set to 0.
Conversely, we found CosConv is less sensitive to the initial choice of weights, and that
sampling weights from N (0, 1

CinK2) was sufficient. In both cases, we suspect that there is
likely a better motivated initialisation scheme, but we leave this for future work. However
for CosConv, we do not expect a better initialisation will improve performance.

4 Experiments & Results
Following this initial approximation, we fine-tune the network for a small number of epochs.
This allows the network to correct for any small approximation errors that the initial approx-
imation of weights might have caused. In all our experiments, we fine-tune the networks for
5 epochs. Specific details of training schedules, and the datasets used, are presented in the
supplementary material.

4.1 CIFAR

ResNet-20 ResNet-32

Layer Pre Top 1 Post Top 1 ∆ Pre Top 1 Post Top 1 ∆ # Params ∆ %

Conv2D - 91.73 - - 92.78 - 0.46M 0.0

Fractional[40] 91.25 91.29 0.04 - - - - -
FracSRF[34] - - - 92.28 91.60 -1.18 0.16M 34.00

FracSRF† 10.00 38.08 -53.65 9.82 37.91 -54.87 0.15M 33.43

C
os

C
on

v

3,3,3,2 87.22 90.75 -0.98 87.74 91.51 -1.27 0.27M 57.74
3,3,2,2 51.43 89.55 -2.18 75.62 90.99 -1.79 0.22M 47.35
3,2,2,2 21.16 86.99 -4.74 16.52 88.4 -4.38 0.21M 44.57
2,2,2,3 39.63 86.87 -4.86 20.92 88.64 -4.14 0.40M 86.65
2,2,2,2 17.55 85.98 -5.75 15.39 87.87 -4.91 0.21M 44.48

C
he

bC
on

v 3,3,3,2 87.22 90.76 -0.97 87.74 91.48 -1.30 0.27M 57.74
3,3,2,2 51.43 89.83 -1.90 75.62 91.16 -1.62 0.22M 47.35
3,2,2,2 21.16 87.79 -3.94 16.52 88.48 -4.30 0.21M 44.57
2,2,2,3 23.63 87.95 -3.78 20.92 89.26 -3.52 0.40M 86.65
2,2,2,2 17.55 86.66 -5.07 15.39 88.16 -4.62 0.21M 44.48

Table 1: Results showing the application of our method to the ResNet-20 and ResNet-32
models on CIFAR10. The sequence of numbers for the CosConv and ChebConv rows denote
the number of “harmonics” for each of the blocks in the network. † indicates using our
regression and retraining approach.

We first conduct experiments on CIFAR-10[23] to validate our method. We use the
smaller ResNet-20 and ResNet-32 networks from He et al. [15]. These models consist of
4 “blocks” of filters, with different numbers of channels for each block. The results of our
experiments are presented in table 1. The sequence of numbers in the layer column next to
the CosConv and ChebConv labels represent the number of harmonics used for the layers in

Citation
Citation
{Zamora, Vargas, Rhodes, Nachman, and Sundararajan} 2021

Citation
Citation
{Saldanha, Pintea, van Gemert, and Tomen} 2021

Citation
Citation
{Krizhevsky, Hinton, etprotect unhbox voidb@x protect penalty @M {}al.} 2009

Citation
Citation
{He, Zhang, Ren, and Sun} 2016

T. W. COSTAIN & V. A. PRISACARIU: APPROXCONV 7

−0.1

0.0

0.1

0.2

ConvNeXt 0.0, Co: 23, Ci: 0

−0.15
−0.10
−0.05
0.00
0.05
0.10
0.15

Order: 6
L2: 1.87e-03

−0.15
−0.10
−0.05
0.00
0.05
0.10

Order: 5
L2: 2.99e-03

−0.08
−0.06
−0.04
−0.02
0.00
0.02
0.04

Order: 4
L2: 4.36e-03

−0.4
−0.2
0.0
0.2
0.4
0.6

ResNet conv1, Co: 53, Ci: 0

−0.4

−0.2

0.0

0.2

0.4

Order: 6
L2: 8.29e-03

−0.2
−0.1
0.0
0.1
0.2

Order: 5
L2: 2.47e-02

−0.06
−0.04
−0.02
0.00
0.02
0.04
0.06

Order: 4
L2: 3.39e-02

−0.4

−0.2

0.0

0.2

0.4

ResNet conv1, Co: 23, Ci: 2

−0.4
−0.2
0.0
0.2

0.4

Order: 6
L2: 2.72e-04

−0.4

−0.2

0.0

0.2

0.4

Order: 5
L2: 8.09e-04

−0.4

−0.2

0.0

0.2

0.4

Order: 4
L2: 3.88e-03

Figure 2: Filters from the ConvNeXt and ResNet networks compressed using our method.
Left: Original Kernel, Right (in columns): Compressed version of this kernel using CosConv
with 6, 5, and 4 orders/harmonics respectively.

each block. The columns show the accuracy after the initial approximation (Pre Top 1), and
the accuracy after 5 epochs of fine tuning. The ∆ columns show: i) the difference in Top 1
accuracy between the method/configuration and the baseline 2D convolution; ii) the percent-
age change in number of parameters. Our method is able to reduce the size of ResNet-20
by 42% losing only 1% accuracy. For both the 20 and 32 variants, the final block contains
the majority of the parameters because of the larger channel dimension. Accordingly, reduc-
ing the number of parameters of this final block alone has more of an effect on the overall
number of parameters than all of the other blocks combined (see ∆% for 2,2,2,2 v.s. 2,2,2,3).
Whilst not designed to approximate previously learned filters, we investigate applying our
“regression and re-training” approach to both Fractional Filters[40] as well as FracSRF[34].
FracSRF was not able to approximate the kernels initially, but was able to recover some of
the accuracy during fine-tuning. We found that Fractional Filters were not able to approx-
imate the kernels to any degree even after fine tuning, and the results were no better than
random guessing (10% Top 1).

4.2 ImageNet
We conduct further experiments on the ImageNet[4] dataset. These experiments use both the
ResNet-18[15] and ConvNeXt-T[25] models. The results of our experiments on ResNet-18
are presented in table 2. We see that our method is able to reduce the size of the model, with
a modest cost to accuracy. Again, like ResNet-20 and ResNet-32, the structure of ResNet-18
has increasing parameter counts through the blocks, and that compressing the final layers of
the network provides outsize reduction in parameter count. Although the top configuration
reduces the number of parameters in the first layer by 30% with no loss in Top 1 accuracy,
the distribution of parameters in the network mean this has a barely noticeable effect on the
overall parameter count (0.02%). However, decreasing the order further (config 5,3,3,3,3),

Citation
Citation
{Zamora, Vargas, Rhodes, Nachman, and Sundararajan} 2021

Citation
Citation
{Saldanha, Pintea, van Gemert, and Tomen} 2021

Citation
Citation
{Deng, Dong, Socher, Li, Li, and Fei-Fei} 2009

Citation
Citation
{He, Zhang, Ren, and Sun} 2016

Citation
Citation
{Liu, Mao, Wu, Feichtenhofer, Darrell, and Xie} 2022

8 T. W. COSTAIN & V. A. PRISACARIU: APPROXCONV

CosConv ChebConv

Config Pre Top 1 Post Top 1 ∆ % Pre Top 1 Post Top 1 ∆ % # Params. ∆ %

Conv2D - 69.76 0.0 - 69.76 0.0 11.68M 0.0

6,3,3,3,3 69.46 70.19 0.43 69.32 70.11 0.35 11.68M 99.98
6,3,3,3,2 64.33 68.97 -0.79 64.11 68.62 -1.14 7.09M 60.70
6,3,3,2,2 56.59 67.90 -1.86 56.35 67.23 -2.53 5.94M 50.88
6,3,2,2,2 14.56 66.89 -2.87 14.68 65.63 -4.13 5.66M 48.43
5,3,3,3,3 66.71 69.80 0.04 65.79 69.74 -0.02 10.99M 94.10
5,3,3,3,2 60.81 68.53 -1.23 59.71 68.15 -1.61 7.09M 60.68
5,3,3,2,2 51.92 67.48 -2.28 13.58 65.44 -4.32 5.94M 50.86
4,3,3,3,2 56.21 68.05 -1.71 54.37 67.34 -2.42 7.09M 60.67
4,3,3,2,2 45.99 66.84 -2.92 11.35 64.66 -5.1 5.94M 50.85

Table 2: Results showing the application of our method to ResNet-18 on the ImageNet
dataset. The sequence of numbers for the CosConv and ChebConv rows denote the number
of “harmonics” for each of the blocks in the network.

Pre Top 1 Post Top 1 ∆ % # Comp. Params. ∆ %

Conv2D - 82.10 0.33M 0.0

7×3, 7×3, 7×9, 6×3, 80.27 81.19 -0.91 0.30M 90.90
7×3, 7×3, 7×4, 6×5, 6×3 79.10 80.87 -1.23 0.27M 83.32

7×3, 7×3, 6×9, 6×3 70.10 79.94 -2.16 0.25M 77.25
7×3, 6×3, 6×9, 6×3 49.60 79.44 -2.66 0.25M 74.98
7×3, 7×3, 5×9, 5×3 62.40 79.28 -2.82 0.19M 58.01
7×3, 7×3, 5×9, 4×3 57.67 78.39 -3.71 0.17M 51.71
7×3, 7×3, 4×9, 4×3 20.30 75.94 -6.16 0.14M 42.26
6×3, 6×3, 6×9, 6×3 24.75 76.26 -5.84 0.24M 73.84
5×3, 5×3, 5×9, 5×3 14.94 77.29 -4.81 0.17M 51.71

Table 3: Results showing our method (CosConv) used on the 7× 7 depth-wise filters from
ConvNeXt, showing the accuracy after the initial approximation and then after fine tuning
for 5 epochs. Comp. Params. (Compressible Parameters) shows the number of parameters
making up the 7×7 convolutions in the network.

CosConv ChebConv

bits Config Top1 Quant. Top1 Delta Top1 Quant. Top1 Delta # Params Model size (MB)

32 Conv2D 69.76 69.76 0.0 69.76 69.76 0.0 11.68M 46.7

8 Conv2D 69.76 69.74 -0.02 69.76 69.74 -0.02 11.68M 23.4
8 6,3,3,3,2 68.97 68.12 -0.85 67.23 67.39 0.16 7.09M 14.2
8 6,3,3,2,2 67.90 65.23 -2.67 65.63 65.20 -0.43 5.94M 11.9
8 5,3,3,3,2 68.53 67.56 -0.97 68.15 66.80 -1.35 7.09M 14.2
8 5,3,3,2,2 67.48 64.69 -2.79 65.44 64.47 -0.97 5.94M 11.9

4 Conv2D 69.76 69.28 -0.48 69.76 69.28 -0.48 11.68M 17.5
4 6,3,3,3,2 68.97 66.70 -2.27 67.23 66.50 -0.73 7.09M 10.6
4 6,3,3,2,2 67.90 64.10 -3.80 65.63 63.88 -1.75 5.94M 8.9
4 5,3,3,3,2 68.53 66.38 -2.15 68.15 65.30 -2.85 7.09M 10.6
4 5,3,3,2,2 67.48 62.76 -4.72 65.44 63.10 -2.34 5.94M 8.9

Table 4: Results showing how our method applied to ResNet-18 on the ImageNet dataset
performs under quantisation.

T. W. COSTAIN & V. A. PRISACARIU: APPROXCONV 9

reduces the number of parameters in the first layer by ≈50% with no loss to Top 1 accuracy,
but still only resulting in a 6% reduction in model size. The deficiencies in the initialization
of the ChebConv layers is more apparent here, where the same configuration loses more
accuracy than an equivalent CosConv.

Figure 2 shows two filters from the first layer of ResNet-18 and one from the ConvNeXt-
T model. We show CosConv approximations of various orders, as well as the L2 error be-
tween the approximation and the original kernel. Whilst our method is less able to recreate
the strong discontinuities found in the depth-wise ConvNeXt kernels than the less discontin-
uous ResNet filters, our method is able to preserve much of the filter’s structure.

To better investigate the capability of our method to reduce the parameter counts of lay-
ers with a larger kernel size, we evaluate our method on the 7× 7 depthwise kernels that
are present throughout the network, and present these results in table 3. Because the vast
majority of the parameters in ConvNeXt pertain to operations are either pointwise/linear
operations, or 2× 2 downsampling kernels for which our method cannot be meaningfully
applied, we consider only the “compressible parameters” which are the parameters of the
7× 7 depth wise convolutions. The results show that our method is able to compress the
applicable layers of the network by 42% with a 2.8% loss in Top 1 accuracy. We suspect that
the impact of our method on ConvNeXt is not as strong as on ResNet-18, because ConvNeXt
contains significantly more discontinuous kernels.

4.3 Quantization

To show that our method can complement other existing methods for reducing the size of
deep models, we perform experiments to show the application of our method in tandem
with quantisation. We use a basic quantisation scheme and apply it on top of our method,
quantizing the parameters of our kernel functions, as well as the activations of the network.
Further details of the setup for these experiments are presented in the supplementary mate-
rial. Table 4 shows our experiments quantising ResNet-18 as well as applying our method.
The ‘Top 1’ column shows the performance of the unquantised configuration, and ‘Quant.
Top1’ shows the results after fine-tuning, applying both our method and quantisation. The
results show that a further 3-4× reduction in model size, compared to unquantised models
(40% reduction compared to quantised conventional convolution), is achieved with a 0.37%
reduction in accuracy.

5 Conclusion

In summary, we have presented a novel method to reduce the number of parameters required
to represent a conventional 2D convolution. Using functional approximations in the form of
cosine and Chebyshev series, we are able to represent the weights of a kernel using fewer
parameters. We outline an approach to learn an initial set of weights based on pre-trained
models that can be further refined through a small amount of fine-tuning. Through experi-
ments, we demonstrated that our method is able to reduce the size of common deep vision
models by as much as ∼ 50% with a minor reduction in accuracy, as well as the compatibility
between our method and quantisation.

In future work, we hope to examine how anisotropic and variable numbers of harmonics
per filter might improve the compression.

10 T. W. COSTAIN & V. A. PRISACARIU: APPROXCONV

Acknowledgements
This work was supported by the Engineering and Physical Sciences Research Council
[EP/R513295/1]. We would also like to thank Henry Howard-Jenkins for constructive dis-
cussions regarding this work.

References
[1] Sajid Anwar and Wonyong Sung. Coarse pruning of convolutional neural networks

with random masks. 2016. URL https://openreview.net/forum?id=
HkvS3Mqxe.

[2] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla
Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sand-
hini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen,
Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher
Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language
models are few-shot learners. In Advances in Neural Information Processing Systems,
volume 33, pages 1877–1901. Curran Associates, Inc., 2020.

[3] Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bo-
janowski, and Armand Joulin. Emerging properties in self-supervised vision trans-
formers. In Proceedings of the IEEE/CVF International Conference on Computer Vi-
sion (ICCV), pages 9650–9660, October 2021.

[4] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A
large-scale hierarchical image database. In 2009 IEEE Conference on Computer Vision
and Pattern Recognition, pages 248–255, 2009. doi: 10.1109/CVPR.2009.5206848.

[5] Emily L Denton, Wojciech Zaremba, Joan Bruna, Yann LeCun, and Rob Fergus. Ex-
ploiting linear structure within convolutional networks for efficient evaluation. Ad-
vances in neural information processing systems, 27, 2014.

[6] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiao-
hua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold,
Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is worth 16x16 words:
Transformers for image recognition at scale. In International Conference on Learning
Representations, 2021.

[7] Mario Drumond, Tao Lin, Martin Jaggi, and Babak Falsafi. Training dnns with hybrid
block floating point. Advances in Neural Information Processing Systems, 31, 2018.

[8] Ahmed T Elthakeb, Prannoy Pilligundla, Fatemehsadat Mireshghallah, Amir Yazdan-
bakhsh, and Hadi Esmaeilzadeh. Releq: A reinforcement learning approach for auto-
matic deep quantization of neural networks. IEEE micro, 40(5):37–45, 2020.

[9] Matthias Fey, Jan Eric Lenssen, Frank Weichert, and Heinrich Müller. Splinecnn: Fast
geometric deep learning with continuous b-spline kernels. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 869–877, 2018.

https://openreview.net/forum?id=HkvS3Mqxe
https://openreview.net/forum?id=HkvS3Mqxe

T. W. COSTAIN & V. A. PRISACARIU: APPROXCONV 11

[10] Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse,
trainable neural networks. In International Conference on Learning Representations,
2018.

[11] Marcelo Gennari do Nascimento, Theo W Costain, and Victor Adrian Prisacariu. Find-
ing non-uniform quantization schemes using multi-task gaussian processes. In Euro-
pean Conference on Computer Vision, pages 383–398. Springer, 2020.

[12] Fabian Groh, Patrick Wieschollek, and Hendrik P. A. Lensch. Flex-convolution
(million-scale point-cloud learning beyond grid-worlds). In Asian Conference on Com-
puter Vision (ACCV), Dezember 2018.

[13] Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connec-
tions for efficient neural network. Advances in neural information processing systems,
28, 2015.

[14] Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep
neural networks with pruning, trained quantization and huffman coding. International
Conference on Learning Representations (ICLR), 2016.

[15] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 770–778, 2016.

[16] Yihui He, Xiangyu Zhang, and Jian Sun. Channel pruning for accelerating very deep
neural networks. In Proceedings of the IEEE international conference on computer
vision, pages 1389–1397, 2017.

[17] Geoffrey Hinton, Oriol Vinyals, and Jeffrey Dean. Distilling the knowledge in a neural
network. In NIPS Deep Learning and Representation Learning Workshop, 2015.

[18] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun
Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. Mobilenets: Effi-
cient convolutional neural networks for mobile vision applications. arXiv preprint
arXiv:1704.04861, 2017.

[19] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely
connected convolutional networks. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 4700–4708, 2017.

[20] Forrest N Iandola, Song Han, Matthew W Moskewicz, Khalid Ashraf, William J Dally,
and Kurt Keutzer. Squeezenet: Alexnet-level accuracy with 50x fewer parameters and<
0.5 mb model size. arXiv preprint arXiv:1602.07360, 2016.

[21] Jorn-Henrik Jacobsen, Jan Van Gemert, Zhongyu Lou, and Arnold WM Smeulders.
Structured receptive fields in cnns. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 2610–2619, 2016.

[22] Max Jaderberg, Andrea Vedaldi, and Andrew Zisserman. Speeding up convolutional
neural networks with low rank expansions. In Proceedings of the British Machine
Vision Conference. BMVA Press, 2014.

12 T. W. COSTAIN & V. A. PRISACARIU: APPROXCONV

[23] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny
images. 2009.

[24] Yann LeCun, John Denker, and Sara Solla. Optimal brain damage. Advances in neural
information processing systems, 2, 1989.

[25] Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, and
Saining Xie. A convnet for the 2020s. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pages 11976–11986, June 2022.

[26] Jian-Hao Luo, Hao Zhang, Hong-Yu Zhou, Chen-Wei Xie, Jianxin Wu, and Weiyao
Lin. Thinet: pruning cnn filters for a thinner net. IEEE transactions on pattern analysis
and machine intelligence, 41(10):2525–2538, 2018.

[27] Eran Malach, Gilad Yehudai, Shai Shalev-Schwartz, and Ohad Shamir. Proving the
lottery ticket hypothesis: Pruning is all you need. In International Conference on
Machine Learning, pages 6682–6691. PMLR, 2020.

[28] Seyed Iman Mirzadeh, Mehrdad Farajtabar, Ang Li, Nir Levine, Akihiro Matsukawa,
and Hassan Ghasemzadeh. Improved knowledge distillation via teacher assistant. In
Proceedings of the AAAI conference on artificial intelligence, pages 5191–5198, 2020.

[29] Marcelo Gennari do Nascimento, Roger Fawcett, and Victor Adrian Prisacariu.
Dsconv: efficient convolution operator. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 5148–5157, 2019.

[30] Mohammad Sadegh Norouzzadeh, Anh Nguyen, Margaret Kosmala, Alexandra Swan-
son, Meredith S Palmer, Craig Packer, and Jeff Clune. Automatically identifying,
counting, and describing wild animals in camera-trap images with deep learning. Pro-
ceedings of the National Academy of Sciences, 115(25):E5716–E5725, 2018.

[31] Adriana Romero, Nicolas Ballas, Samira Ebrahimi Kahou, Antoine Chassang, Carlo
Gatta, and Yoshua Bengio. Fitnets: Hints for thin deep nets. In Yoshua Bengio and
Yann LeCun, editors, 3rd International Conference on Learning Representations, ICLR
2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015.

[32] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks
for biomedical image segmentation. In International Conference on Medical image
computing and computer-assisted intervention, pages 234–241. Springer, 2015.

[33] Tara N Sainath, Brian Kingsbury, Vikas Sindhwani, Ebru Arisoy, and Bhuvana Ram-
abhadran. Low-rank matrix factorization for deep neural network training with high-
dimensional output targets. In 2013 IEEE international conference on acoustics, speech
and signal processing, pages 6655–6659. IEEE, 2013.

[34] Nikhil Saldanha, Silvia L Pintea, Jan C van Gemert, and Nergis Tomen. Frequency
learning for structured cnn filters with gaussian fractional derivatives. In BMVC, 2021.

[35] Martin Simonovsky and Nikos Komodakis. Dynamic edge-conditioned filters in convo-
lutional neural networks on graphs. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 3693–3702, 2017.

T. W. COSTAIN & V. A. PRISACARIU: APPROXCONV 13

[36] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-
scale image recognition. In International Conference on Learning Representations,
2015.

[37] Zhourui Song, Zhenyu Liu, and Dongsheng Wang. Computation error analysis of block
floating point arithmetic oriented convolution neural network accelerator design. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 32, 2018.

[38] Lloyd N Trefethen. Approximation theory and approximation practice [electronic re-
source]. Other titles in applied mathematics. SIAM, Philadelphia, extended edition.
edition, 2019. ISBN 9781611975949 (ebook).

[39] Kuan Wang, Zhijian Liu, Yujun Lin, Ji Lin, and Song Han. Haq: Hardware-aware auto-
mated quantization with mixed precision. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 8612–8620, 2019.

[40] Julio Zamora, Jesus A. Cruz Vargas, Anthony Rhodes, Lama Nachman, and Narayan
Sundararajan. Convolutional filter approximation using fractional calculus. In Pro-
ceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) Work-
shops, pages 383–392, October 2021.

[41] Linfeng Zhang, Jiebo Song, Anni Gao, Jingwei Chen, Chenglong Bao, and Kaisheng
Ma. Be your own teacher: Improve the performance of convolutional neural networks
via self distillation. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 3713–3722, 2019.

[42] Xiangyu Zhang, Jianhua Zou, Kaiming He, and Jian Sun. Accelerating very deep
convolutional networks for classification and detection. IEEE transactions on pattern
analysis and machine intelligence, 38(10):1943–1955, 2015.

[43] Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun. Shufflenet: An extremely
efficient convolutional neural network for mobile devices. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 6848–6856, 2018.

[44] Shuchang Zhou, Yuxin Wu, Zekun Ni, Xinyu Zhou, He Wen, and Yuheng Zou. Dorefa-
net: Training low bitwidth convolutional neural networks with low bitwidth gradients.
arXiv preprint arXiv:1606.06160, 2016.

[45] Yue Zhou, Xiaofang Hu, Jiaqi Han, Lidan Wang, and Shukai Duan. High frequency
patterns play a key role in the generation of adversarial examples. Neurocomputing,
459:131–141, 2021.

