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This document provides additional information regarding our EpipolarNVS contribution
for single-image novel view synthesis.

A Extended encoding strategy
As explained in the core paper, we extended our original relative pose encoding strategy to
better apprehend the specificity of KITTI [3] and Synthia [5] datasets.

As shown on the Figure 1, most of the car trajectories are made based on a straight path
and only a few turns exist in the sequence 00. In a similar fashion way, the sequence 01 is
almost an end-to-end complete pure translation.

Figure 1: We illustrate below the overall trajectory in the (XZ) plane of the car that drove
across German’s street to acquire the 00 (left) and 01 (right) sequence of the KITTI[3]
dataset.

B Spectral loss
Theoretical insights are presented in this section regarding the spectral loss function that was
used for training in addition to the usual MAE.
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As already mentioned in the main paper, such loss directly takes inspiration from [2], one
of the latest state-of-the-art paper related to the super-resolution issue. Authors emphasise in
their work on the fundamental role high frequencies have in the image generation process.

The Gaussian filter wgauss we used is straightforwardly defined by a mean µ = ks−1
2 and

a variance σ = ( ks
ks+1 )

2, with ks=5.
Such formulation allows to end up with the Spectral loss function that was introduced in

the paper:
Lspectral = ||IHF

t − ÎHF
t ||22 (1)

We therefore extensively focus through this loss on the highest frequencies of the target
image, to enforce during training the network to retrieve as much as much as possible fine
and complex structures.

C Experiments

C.1 Dataset characteristics
We first provide here some additional information regarding the different datasets we used
for our experiments.

Regarding the ShapeNet dataset, we decided to not use the same dataset as [4, 6] but
rather worked with the rendered ShapeNet images from DISN [7]. It offers at least three
main improvements over the ones used in [4]:

• Intrinsic camera parameters are available.

• Each object within a class has 36 different views (against 18 for the dataset provided
by [4]).

• Rendered images have a non null elevation angle and the azimuth one is sampled on
a regular 10° basis. A random noise term is added on each rendered view to slightly
jitter the camera pose.

Considering real-world Synthia [5] and KITTI [3] datasets, original images used in [4]
also only contain extrinsic matrices, leaving apart the intrinsic information our architecture
requires. We, therefore, build up our own train/test sets, with the same scenes as the ones
used in [4]. Images were resized to 256× 256 for speed-up and convenience purposes and
ground-truth intrinsic matrices were adjusted accordingly. Images we work with on these
real scene scenarios are more challenging than the ones used in [4][6] since dealing with
center-cropped images discards fast-moving elements (on image borders) from the scenes.

Finally, we get consideration for the same setting used in [4] for the maximal latitude be-
tween the source and target view: full ±180◦ azimuthal range is permitted for the ShapeNet
classes while a maximum of ±10 frames are considered for the real world datasets Synthia[5]
and KITTI [3].
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C.2 Ablation studies
We conduct ablation studies to highlight and understand how some meaningful properties of
our encoding strategy behave.

Benefit of the extended encoded pose strategy

Dealing with real-world scene datasets and the maximum 10 frames difference that could
occurred between the source and the target view is one of the most tricky scenarios for single-
image novel view synthesis. We thus conduct a first ablation study to validate the intuition
behind this additional channel that encodes the relative largest motion in the (XZ) plane.
Please note that the Spectral loss has not been added in this ablation study, leading to slightly
different results from the original ones reported in the main paper.

Method Synthia KITTI
MAE (↓) SSIM (↑) MAE (↓) SSIM (↑)

Encoded pose 0.077 0.602 0.109 0.576
Extended encoded pose 0.066 0.622 0.086 0.605

Table 1: Benefit on Synthia [5] and KITTI [3] datasets of our extended encoding strategy.
Adding such fourth channel helps the network to better perform on real-world datasets. The
grid G15 has been used in both cases.

As shown in Table 1, and considering the neural network architecture as fixed, the fourth
channel we have added to our representation Es−→t clearly helps the network to perform
better in the task it has been trained for. The SSIM gained more than 2 points on average
while the MAE significantly decreased (by almost 20% on average for the two datasets) to
reach competitive results with [4].

Figure 2: Source fixed view Is (top row, Left) and three consecutive target views (bottom
row, Left) from Synthia [5] test set. - Predictions made by our model with the encoded
pose (top row,Right) and the extended encoded pose strategy (bottom row,Right). Adding
an additional channel in our extended pose encoding allows the network to better apprehend
the motion that occurred in Synthia [5] and KITTI[3]. The grid G15 has been used in both
cases.

We highlight on Figure 2 the positive influence this last channel has on the our model.
While the manhole cover (disappearing on the target views sequence) is entirely discarded
by the network trained with the 3 channel pose encoding representation, the extended version
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we proposed managed to grasp the car’s motion.
Spectral loss influence

A second ablation study has been conducted to highlight to which extent the spectral loss
function positively impacts the training of our model architecture.

Datasets Metrics L1 only L1 +Lspectral

ShapeNet - Car L1 (↓) 0.019 0.016
SSIM (↑) 0.912 0.928
PSNR (↑) 22.61 24.23

ShapeNet - Chair L1 (↓) 0.037 0.032
SSIM (↑) 0.892 0.901
PSNR (↑) 19.19 19.55

Synthia L1 (↓) 0.066 0.065
SSIM (↑) 0.622 0.631
PSNR (↑) 19.24 19.44

KITTI L1 (↓) 0.086 0.082
SSIM (↑) 0.605 0.609
PSNR (↑) 16.99 17.11

Table 2: Impact of the Spectral loss function.

As seen in Table 2, constraining the training on the high frequencies helps the network
to generate more realistic novel views. Such quantitative improvement is visually confirmed
in Figure 3 where the same object instance is generated through both configurations with the
ShapeNet Car class.

Figure 3: Inference results from the ShapeNet [1] Car test set. From the top row to the
bottom one: Source images Is, Ours prediction with L1 only at training, Ours prediction
with Lspectral +L1 at training, Ground truth - Target images It . From a general perspective,
tires and windows are better retrieved at inference time when high frequencies have been
constrained during training.
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Discrete grid Gr granularity and sampling strategy

We present a third ablation study to get some knowledge regarding the granularity our
grid sampling needs. Beyond the three grids we tested out, we also consider a random sam-
pling strategy, that consists of sampling a fixed number (corresponding to 1% of pixels for a
256× 256 image) of locations. Table 3 summarises the different results of this experiment
on the real-world datasets.

Method Synthia KITTI
MAE (↓) SSIM (↑) MAE (↓) SSIM (↑)

Random Sampling
(655 pix. sampled)

0.0816 0.593 0.1290 0.549

G15 grid
(225 pix. sampled)

0.0823 0.589 0.1222 0.562

G20 grid
(400 pix. sampled)

0.0857 0.576 0.1241 0.560

G25 grid
(625 pix. sampled)

0.0908 0.575 0.1217 0.563

Table 3: Sampling strategy influence over the real-world datasets Synthia [5] and KITTI [3].

Overall, there are no significant differences between the strategies that were tested in this
ablation study. However, the random and the grid sampling strategy differ in an important
aspect: the latter performs significantly faster and roughly takes 4 times less time to form
a batch of triplets (Is, It ,Es−→t) than the random sampling strategy. Using a regular grid
Gr always use the same pixel locations from Is to build Es−→t while the random sampling
strategy imposes to picked up new samples all the time.

We performed the same ablation study on the synthetic ShapeNet dataset [1] and drew
identical observations.

C.3 Inference results
We finally present in this last part additional qualitative results from our model, on all the
four datasets we have get consideration for in this study. We present for each dataset 8 dif-
ferent scenes or object instances.
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Figure 4: Visual results from the test ShapeNet [1] Car class. From left to right: the source
image Is, the Encoded Pose Es−→t , the prediction of [4], our prediction and the target image
It .
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Figure 5: Visual results from the test ShapeNet [1] Chair class. From left to right: the source
image Is, the Encoded Pose Es−→t , the prediction of [4], our prediction and the target image
It .
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Figure 6: Visual results from the Synthia [5] test set. From left to right: the source image Is,
the Encoded Pose Es−→t , the prediction of [4], our prediction and the target image It .
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Figure 7: Visual results from the KITTI [3] test set. From left to right: the source image Is,
the Encoded Pose Es−→t , the prediction of [4], our prediction and the target image It .
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