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Abstract

For visual manipulation tasks, we aim to represent image content with semantically
meaningful features. However, learning implicit representations from images often lacks
interpretability, especially when attributes are intertwined. We focus on the challeng-
ing task of extracting disentangled 3D attributes only from 2D image data. Specifically,
we focus on human appearance and learn implicit pose, shape and garment represen-
tations of dressed humans from RGB images. Our method learns an embedding with
disentangled latent representations of these three image properties and enables meaning-
ful re-assembling of features and property control through a 2D-to-3D encoder-decoder
structure. The 3D model is inferred solely from the feature map in the learned embed-
ding space. To the best of our knowledge, our method is the first to achieve cross-domain
disentanglement for this highly under-constrained problem. We qualitatively and quan-
titatively demonstrate our framework’s ability to transfer pose, shape, and garments in
3D reconstruction on virtual data and show how an implicit shape loss can benefit the
model’s ability to recover fine-grained reconstruction details.

1 Introduction
If you reconstruct a 3D model from a single image, you also want the power to control its
content in a meaningful way. This wish has created a wide range of applications that leverage
learning of implicit representations by disentanglement, such as face identity swapping [10,
46], hairstyle transfer [16, 38] and pose and shape transfer [17, 28, 47]. The main objective
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of implicit representation learning is to disentangle and encode information regarding each
characteristic of input signals such that a new sample can be generated by manipulating
learned representations. For example, if we separate pose and shape information from the
3D model of a person, we can achieve pose transfer by simply replacing the pose information
while keeping the original shape information.

However, the current literature only discusses cases where input and output are from the
same domain. This means that if the input is an image or a 3D mesh, the output would also
take the same form as the input and learned representations can only control the output in
the same domain. Due to this restriction, current works are difficult to be directly applied
to 2D-to-3D tasks such as Augmented Reality (AR), where 3D information is often inferred
from easily acquired 2D images [4, 9, 20, 26, 41].

In this paper, we propose a solution to this highly under-constrained problem. We focus
on learning pose, shape and garment representations of dressed human bodies from 2D RGB
images and use these representations to manipulate corresponding 3D models. Our inspi-
ration is drawn from the fact that the 3D mesh of a dressed human can be solely estimated
from the feature map of its images [35, 36] by training a shape prior. A key deduction from
this observation is that the feature map of an object’s 2D signal contains sufficient informa-
tion to construct its 3D model if a shape prior is provided. Therefore, if we disentangle and
reconstruct feature maps rather than input signals themselves, we can subsequently control
the final 3D models which are inferred from the feature maps using the shape prior.

Our method consists of three parts: a feature extractor, a multi-head encoder-decoder
and an MLP, as illustrated in Fig. 1. A feature extractor firstly extracts a feature map from
the input image. Further, a consecutive feature extractor learns an embedding that encodes
disentangled representations for pose, shape and garment into three respective latent codes.
The feature map is then recovered from the latent codes, and finally, an MLP is used as a
shape prior to construct the 3D model based on the pixel-aligned feature interpolated from
the feature map. To change the pose, shape or garment of the 3D model individually while
keeping the other properties, we can change the corresponding latent code, which conse-
quently changes the generated 3D mesh.

To the best of our knowledge, our model is the first method to use representations learned
from 2D input to control 3D output. Although we exemplify the power of the method with
dressed human bodies, such a principle can be generalised to any class of object if the shape
prior can be properly trained. In contrast to standard human modelling methods [2, 19,
23, 34], we are able to control the model without using a template. To summarize, our
contributions are twofold:

• We propose a method to disentangle 3D shape attributes from 2D image data. We ex-
emplify the principle by learning pose, shape and garment representations of dressed
humans from 2D images and allow expressive control of reconstructed 3D model from
disentangled feature sub-manifolds. Our method is the first to achieve 2D-to-3D rep-
resentation learning and output manipulation.

• We analyse design choices and provide experimental evidence of controlled feature
manipulation for pose, shape and garment representations from 2D input on a publicly
available dataset [32].
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2 Related Work
Disentanglement The objective of disentanglement is to find underlying latent representa-
tions that control the variation of the data. The pioneering work in this area is InfoGAN [7]
which is based on Generative Adversarial Networks (GANs) [11] and aims to maximize the
mutual information between the latent codes and generator distribution. β -VAE [16] and its
variant [6] use a Variational Autoencoder (VAE) [21] rather than GAN model and penalize a
KL-Divergence term to enhance the independence within latent space.

Disentanglement can be applied to both 2D image inputs and 3D inputs, to achieve either
attribute transfer like face identity swapping [10, 46] and hairstyle transfer [16, 38] on 2D
images, or pose and shape transfer [17, 28, 47] on 3D inputs. Our method is more related to
[47] where pose and shape representations are learned in an unsupervised manner. The most
significant differences between our method and most existing pipelines are that our input and
output are from different domains (2D input and 3D output), and we disentangle the image’s
feature map which is an abstract representation rather than the raw data. These differences
make our task much more challenging.

Parametric Human Modelling Parametric models targeting humans initially focus on the
parameterization of the naked human body. Various body templates, and skeleton hands
[44, 45], have been proposed in the past decade [2, 14, 23, 30]. Such a parameterization
has recently been generalized to the modelling of the garment [3, 13, 22, 24, 25, 32, 39].
Compared to the naked human body, the parameterization of the garment is much more
difficult due to the complicated local details such as wrinkles and foldings. The garment
models are usually associated with the naked body model such as SMPL. They are either
represented as separated SMPL-like templates [32, 39, 48] or displacement fields to the
body model [1, 24]. Some works [3, 32] additionally model the intra-class garment variation
using statistical tools such as principle component analysis (PCA).

Implicit Neural Representation Implicit neural representation aims to represent a 3D
object using an implicit function which typically takes the form of an MLP. The pioneering
works are OccNet [27] and DeepSDF [31] which encode the objects as an occupancy field
and a signed distance field, respectively. Compared with traditional 3D representation such
as voxel or mesh, neural representation allows a continuous surface representation which
circumvents the loss of accuracy due to discretization. Following these two works, many
variations of implicit functions [5, 18, 33, 40] and training losses [12] have been proposed.
The aforementioned methods mainly focus on 3D input such as point clouds, but PiFU [35]
generalizes the implicit function to 2D images by proposing a pixel-aligned implicit function.
Instead of a 3D coordinate, the function takes in the corresponding 2D image feature of the
3D location and the depth value, and it can infer a wide variety of human poses and shapes.
DISN [42] also has a similar structure to construct static objects. Our method is closely
related to PiFU as we disentangle pose and shape information from the image’s feature map.

3 Method
Our method intends to disentangle pose, shape and garment representations of a dressed
human from a single RGB image and simultaneously infer the 3D mesh of it. Existing works
[35, 36] have already demonstrated that 3D mesh can be inferred solely from a single image
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Figure 1: This figure illustrates the architecture of our method. The feature map is F is ex-
tracted from the image by the feature extractor f (·). The feature map is then disentangled
into three latent codes lθ , lβ and lγ which correspond to pose, shape and garment representa-
tions, respectively. By swapping the latent code, a feature map F′ with swapped information
is recovered by h−1(·), from which the 3D mesh with swapped property is inferred as the
implicit expression by g(·), where g(·) takes both a 3D coordinate x and the aligned feature
of the projection of x on the image.

by pixel-aligned implicit function based on the feature map of the image. This indicates that
such a feature map contains all information regarding the target mesh; hence, pose, shape and
garment representation can be disentangled. Therefore, our method consists of three parts: a
feature extractor that extracts the feature map from the image, a multi-head encoder-decoder
that disentangles and reconstructs the feature map, and an MLP which infers the 3D mesh
from the feature map. We illustrate this pipeline in Fig. 1.

3.1 Feature Disentanglement

After feature extraction, the feature disentanglement is achieved by a multi-head autoencoder
module. Given an image I1, its feature map F1 ∈RH×W×C can be extracted using the feature
extractor f (·). Such a feature map encodes all the necessary information to construct a 3D
model, as the missing depth information would be compensated by the implicit function,
which acts like a 3D human shape prior [35]. Hence, we only need to disentangle the feature
map so that a new feature map and thus the 3D human body can be reconstructed after latent
editing using the encoded information from an image of the desired human model.

The disentanglement network follows a similar design to the work of Zhou et al. [47]. To
disentangle the pose, shape and garment properties, the feature map F1 is past through three
separated encoder modules hθ (·), hβ (·) and hγ(·), which downsample, flatten and project the
feature map into three latent codes: lθ1 , lβ1 and lγ1 , which represent pose, shape and garment
information of the 3D model, respectively. With three latent codes, the feature map can be
reconstructed by concatenating the latent codes together into a longer latent vector l′1, where
l′1 = cat[lθ1 , lβ1 , lγ1 ]. Such a vector is then passed through the decoder module h−1(·) of the
encoder-decoder, which upsamples the vector and then reconstructs the feature map F′1. The
pose, shape or garment transfer can be achieved by simply replacing the corresponding latent
code. For example, if we want to transfer the pose of the person in I1 to another pose of the
person in I2, we just need to extract the latent codes lθ2 , lβ2 and lγ2 from I2 and replace the
latent code lθ1 with lθ2 . As a result, the feature map F′1←θ2

reconstructed from concatenated
latent code l′1←θ2

= cat[lθ2 , lβ1 , lγ1 ] would contain the shape and garment information of I1
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but the pose information of I2. According to F′1←θ2
, the implicit surface expression can be

predicted by the surface prediction MLP.

3.2 3D Reconstruction

In recent years, the implicit neural representation has exhibited the exceptional capability
in 3D rendering [31, 35, 37, 40]. The object or scene is often encoded into an MLP as an
occupancy field (OCC) or a signed distance field (SDF). Mathematically, it is defined as:

sx = g(x) (1)

where g(·) is the MLP and sx is the learned implicit surface expression at the sampling
position x ∈ R3. The object’s surface is represented by the level set of the implicit function
g(·), from which the 3D geometry can be easily constructed by Marching Cube. Normally,
a MLP could only store one scene or object [31, 37, 40]. However, a single MLP g(·) can be
generalized to multiple objects by taking feature map of the image as an input [35, 36]:

sx = g(Fx,xz) (2)

where x is the projection of x on to the image plane, Fx ∈RC is the value of encoded feature
map F at a sampling point x, and xz is the depth value of x. By taking the pixel-aligned
feature Fx, multiple objects can be inferred from a single MLP and objects can be controlled
by editing the feature map.

For 2D-3D human reconstruction task, the formulation in Eq. 2 is commonly supervised
using the ground truth occupancy values [35]. However, compared with occupancy, we
consider the SDF as a better supervision signal during training because using SDF we can
not only supervise the distance value but also the surface orientation. Unfortunately, the
formulation in Eq. 2 is not suitable for SDF supervision as the output is not differentiable
to the x hence the surface norm is unable to be computed. In order to supervise the surface
norm, and being inspired by [43], we change the formulation in Eq. 2 into:

sx = g(Fx,σ(x)) =̂ g(F,x) (3)

where σ(·) is the positional encoding function defined in [43]. For the sake of simplification,
we denote the MLP expression g(Fx,σ(x)) as g(F,x). At here, we explicitly take the 3D
location x as an input and hence the surface norm can be computed and supervised.

3.3 Loss

Our loss includes two parts: reconstruction loss and disentanglement loss.

3D Reconstruction Loss In order to learn the feature disentanglement from 2D images,
we need to first initialize the feature extractor f (·) and the MLP modules g(·) for a 3D
shape prior. f (·) followed by g(·) makes up the direct reconstruction pipeline similar to [35],
which can be supervised by the 3D reconstruction loss according to ground-truth 3D meshes
M. We define the reconstruction loss as Lrecon(F,X,M), where X is a set of 3D points that
are sampled around the surface of M. We explore two implicit representations: occupancy
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and signed distance function (SDF). Specifically, following [35], the occupancy-based 3D
reconstruction loss is defined as:

Lrecon(F,X,M) = ∑
x∈X
∥g(F,x)−MOCC(x)∥2

2 (4)

where X is a set of off-surface points that are sampled tightly around the surface in a way
such that the half of the samples are outside the surface and the other half are inside the
surface. MOCC(x) is the ground truth occupancy value of M at 3D position x and x ∈ X.

For SDF-based reconstruction, we adopt the implicit geometric regularization [12], which
can learn the SDF surface from point clouds without ground truth SDF supervision, as the
3D reconstruction loss. We combine the sampling strategy in [40] and [35]: a set of points
X = Xon∪Xo f f are randomly sampled such that half number of points are on the surface of
the mesh, denoted as Xon and the remaining points are off the surface, denoted as Xo f f . In
particular, Xo f f are randomly sampled around the ground-truth mesh and within the cubic
space with a ratio of 3:1. For each image, the reconstruction loss Lrecon(F,X,M) consists of
three parts: the level set loss Lls, the Eikonal regularization loss Ligr and off surface loss Lo:

Lrecon(F,X,M) = λlsLls +λigrLigr +λoLo (5)

with Lls = ∑
x∈Xon

(
∥g(F,x)∥1 +1−

〈
∇xg(F,x),∇xM(x)

〉)
, (6)

Ligr = ∑
x
∥∇xg(F,x)−1∥1, (7)

Lo = ∑
x∈Xo f f

exp
(
−α · ∥g(F,x)∥1

)
, α ≫ 0. (8)

The level set loss Lls forces the gradient of the MLP (i.e., the predicted surface normal)
∇xg(x) to align with the ground-truth normal of the surface ∇xM(x). The Eikonal regu-
larization loss Ligr regularize the MLP to satisfy Eikonal equation ∥∇xg(x)∥ = 1. The off
surface loss Lo push the points off the surface away from the level set surface. The overall
reconstruction loss Lrecon is the sum of these three components, weighted by coefficients λls,
λigr and λo respectively. In the experiments, the coefficients are set to λls = λigr = 1 and
λo = 0.1.

Disentanglement Loss With the properly pre-trained feature extractor and MLP surface
predictor, we then jointly train the encoder-decoder for feature disentanglement and MLP
for surface refinement. In order to properly learn the disentanglement of pose, shape and
garment, we adopt the control variate strategy. We construct a dataset which consists of pairs
of images and their corresponding ground-truth 3D meshes. For each pair, the difference
between the images is either in pose, shape or garment, while the other two are kept same.
This control strategy allows the encoder-decoder to focus on one property at each time and
hence interpret the difference in latent space. We provides more details about our dataset
pairing in section 4.1.

For each image pair, denote the different property between them as d, where d ∈{θ ,β ,γ}
and two remaining properties as s1 and s2, where s1,s2 ∈ {θ ,β ,γ} \ {d}. Let F1 = f (I1)
and F2 = f (I2), then {ls1,1, ls2,1, ld1} = h(F1) and {ls1,2, ls2,2, ld2} = h(F2). We define two
procedures:

• Disentangled self-reconstruction If no latent code swapping is applied, we should be
able to reconstruct the feature maps F1 and F2 by F′1 = h−1(l′1) and F′2 = h−1(l′2),
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where l′1 = concat[ls1,1, ls2,1, ld1] and l′2 = concat[ls1,2, ls2,2, ld2]. We should also
be able to recover M1 and M2 from the reconstructed feature map F′1 and F′2.

• Disentangled cross-reconstruction In the case where the latent codes of property d is
swapped, the modified latent codes become: l′1←d2 = concat[ls1,1, ls2,1, ld2], then
two new feature maps can be reconstructed as F′1←d2 = h−1(l′1←d2) and F′2←d1 =
h−1(l′2←d1). Since there is only one different property between two images, the re-
constructed feature map of one image should be the same as the original feature maps
of the other and so are their 3D meshes.

We define the feature map reconstruction loss before and after disentanglement during
self- and cross-reconstruction:

L f eat = ∥F1 − F′1∥2
2 + ∥F2 − F′2∥2

2 + ∥F1 − F′2←d1∥2
2 + ∥F2 − F′1←d2∥2

2 (9)

We also add the latent identity loss Llatent which matches the compressed latent code of two
invariant properties in each image pair:

Llatent = ∥ls1,1− ls1,2∥2
2 +∥ls2,1− ls2,2∥2

2 (10)

We define a surface reconstruction loss (either with occupancy or SDF) between the ground
truth mesh M and the predicted output g(·). This term direct supervises the quality of the 3D
models generated from the reconstructed feature maps:

Lrecon = Lrecon(F′1,X1,M1)+Lrecon(F′2,X2,M2)

+Lrecon(F′2←d1,X1,M1)+Lrecon(F′1←d2,X2,M2) (11)

Therefore, for each image pair, the overall disentanglement loss Ldisent is defined as the
weighted combination of the above three terms:

Ldisent = L f eat +Llatent +Lrecon (12)

4 Experiment

4.1 Dataset
It is extremely challenging to obtain a real-world dataset that contains two humans with
different shapes and garments but in the same pose. Therefore, we modified a public physi-
cally simulated dataset, TailorNet dataset [32] to evaluate our method. The original dataset
consists of physically simulated 3D sequences of motions of dressed humans, which are
modelled by the SMPL model with an additional garment layer on top of it. The dataset
includes humans with a range of body shapes and several types of garments, where each
type of garment also has intra-class variation. We make the following modifications to the
dataset: (i) We construct the image pairing by comparing the SMPL parameters of the human
body and garment type. In the end, we obtain 1369 pose-vary pairs, 51 shape-vary pairs and
761 garment-varying pairs. (ii) Since the combined ground-truth meshes of dressed humans
have multiple layers, the normals are in the opposite direction at overlapping regions. This
may confuse the network during training with SDF-based supervision loss. Therefore, we
convert them into single-layer water-tight meshes using the Manifold package. (iii) For each
mesh, we render the front view using Blender as the input to our method. The final output
is the three subsets that contain pairwise data variation. The three subsets are padded to the
same size of 1369 and split into the training, validation and test dataset with a ratio of 6:2:2.
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Experiment Implicit Func Chamfer (mm) P2S (mm) normal (mm)

self SDF/OCC 1.43/3.65 11.21/22.24 11.16/8.93
cross - pose SDF/OCC 1.26/4.73 12.12/21.63 10.63/8.72
cross - shape SDF/OCC 2.46/3.09 12.25/19.88 11.46/9.28
cross - garment SDF/OCC 1.26/3.36 9.35/22.61 11.53/8.86

Table 1: Reconstruction error (median) after swapping the latent code of body shape, pose
and garment style, using SDF and occupancy.

Figure 2: Example results of surface reconstruction after pairwise swapping the encoded
latent components. Note that the pose and shape swapping are achieved on SDF-based
pipeline, while the garment swapping is achieved on occupancy-based pipeline.

4.2 Implementation Details
Our method is implemented using PyTorch. For the feature extractor f (·), we follow the
choice in [35] and use the Hourglass Network [29]. For the encoder h(·) and decoder mod-
ules h−1(·), we use a ResNet18 [15] implemented in Bolts library [8]. We change the input
dimension of the first convolutional layer to match the dimension of the feature map. The
latent size for lθ , lβ and lγ are are all set to be 128 according to the ablation study (see details
in supplementary material). For the surface predictor, we follow the design in [43] which is
a fully connected MLP with residual link between every two linear layers.

We first pre-train the feature extractor and surface predictor on the direct reconstruction
pipeline. For both occupancy and SDF supervision, we use the RMSprop optimizer with
a learning rate of 1× 10−4, the number of sampling is 1000 and batch size is 8. After
epoch 150, the learning rate is reduced to 1× 10−5 to ensure smooth convergence. During
the training for feature disentanglement, the feature extractor is frozen while the encoder-
decoder and surface predictor are tuned together. The same optimizer is used except that the
learning rate is kept as 1×10−4 until the convergence reaches around 360 epochs.

4.3 Results
4.3.1 Reconstruction with latent representation

Our proposed encoder-decoder structure allows us to disentangle and modify the latent code
l by replacing its components lθ , lβ and lγ . We test the quality of self-reconstruction and
pairwise cross-reconstruction defined in Section 3.3. The reconstruction quality is measured
using three metrics: the Chamfer distance between reconstructed and ground-truth surfaces,
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Figure 3: Example results of surface reconstruction after uncontrolled swapping of both
body pose and shape. The synthetic mesh (rightmost) incorporates the tight garment style of
I0, body pose of I1 and slimmer body shape of I2.

the Euclidean distance from predicted vertices to their closest point on the ground-truth sur-
face (P2S), and the RMS difference between the predicted and ground-truth surface normal
vectors. We summarise the results in Table 1, where “self ” means self-recon and “cross”
means cross-recon. The SDF-based pipeline achieves a higher accuracy than the occupancy-
based pipeline. However, from visual inspections, we find the SDF-based method can bet-
ter distinguish between different body poses and shapes than garment styles. By contrast,
occupancy-based disentangled reconstruction capture all three variations, though the recon-
struction quality is lower. The difference may be because the SDF approach tends to over-
smoothen the predicted surface and the garment variation in the training dataset is too subtle.
Fig. 2 shows the visual demonstration for how the mesh reconstruction is controlled through
pairwise latent swapping.

Pairwise swapping can only change one property each time and requires the other two
to be identical, which is hardly possible in reality. Therefore, given a specific garment, we
test the uncontrolled swapping where the body pose and shape latent code are replaced by
new values at the same time. As shown in Fig. 3, the body pose lθ , shape lβ and garment
information lγ are respectively encoded from I1, I2 and I0, concatenated, and decoded into a
new human body. We have included more examples in the supplementary material.

4.3.2 Interpolation test

Given a starting and ending frame with different features, we are able to interpolate the latent
codes to achieve a smooth transition of body pose, shape or garment style in the reconstructed
mesh, as shown in Fig. 4. While the pose interpolation can be used to achieve an animation
effect, the body shape and garment interpolation is helpful in generating new virtual assets
in an effortless way. More examples are provided in the supplementary material.

5 Discussion and Conclusion
In this paper, we propose the first and novel method for the task of extracting disentangled
3D attributes only from 2D image data. To illustrate the feasibility, we apply the principle to
learn pose, shape, and garment representations of a human body directly from images. Our
method disentangles and encodes the representations of three properties into latent codes us-
ing an encoder-decoder from the feature map of the input image and reconstructs the human



10 XUE HU, XINGHUI LI: 2D-TO-3D DISENTANGLEMENT

Figure 4: Example results of interpolation test: the latent code of source and target image
are interpolated to reconstruct a dressed human body with new features.

body based on learned representations using the implicit function. We demonstrate the con-
trol to the reconstructed mesh by manipulating the code in the latent space. We believe that
our novel approach towards 2D-to-3D disentanglement can pave the way to interpretable
manipulations of 3D content from 2D images alone and therefore opens the path to more
seamless and controllable interaction with 3D models without the need for explicit super-
vision. In our future work we plan to use TKFAC on MindSpore 1, which is a new deep
learning computing framework.

1https://www.mindspore.cn/
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