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Abstract

Text-VQA aims at answering questions that require understanding the textual cues in
an image. Despite the great progress of existing Text-VQA methods, their performance
suffers from insufficient human-labeled question-answer (QA) pairs. However, we ob-
serve that, in general, the scene text is not fully exploited in the existing datasets– only a
small portion of the text in each image participates in the annotated QA activities. This
results in a huge waste of useful information. To address this deficiency, we develop
a new method to generate high-quality and diverse QA pairs by explicitly utilizing the
existing rich text available in the scene context of each image. Specifically, we propose,
TAG, a text-aware visual question-answer generation architecture that learns to produce
meaningful, and accurate QA samples using a multimodal transformer. The architec-
ture exploits underexplored scene text information and enhances scene understanding of
Text-VQA models by combining the generated QA pairs with the initial training data.
Extensive experimental results on two well-known Text-VQA benchmarks (TextVQA
and ST-VQA) demonstrate that our proposed TAG effectively enlarges the training data
that helps improve the Text-VQA performance without extra labeling effort. Moreover,
our model outperforms state-of-the-art approaches that are pre-trained with extra large-
scale data. Code is available here.

© 2022. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.
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Statistics in TextVQA Training Set Training Example
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Figure 1: Left: statistics of the numbers of annotated QA pairs (blue) and scene text words
(orange) for each image in the TextVQA training set [41]. Clearly, the scene text words are
not fully leveraged in the annotations. Right: an example of a training image with more than
5 scene text words, which is typical. Best viewed in color.

1 Introduction

Visual question answering (VQA) task [5] aims at inferring the answer to a question based
on a holistic understanding of an image. It facilitates many AI applications such as robot in-
teractions [4], document analysis [36] and assistance for visually impaired people [7]. Text-
VQA specifically addresses question answering requests where reasoning text in an image is
essential to answer a question. It is a more challenging task in a sense that it requires not only
understanding the question and the visual context, but also the embedded text in an image
[41]. To achieve this goal, Text-VQA methods [22, 25, 49] aim at studying the interactions
among question words, visual objects, and scene text in an image. Recent approaches have
focused on either improving transformer-based architectures [43] in a multi-modal manner
[16, 21, 22, 25, 32, 34, 54], or adopting pre-training using additional large-scale data [49]
to further boost their model performance. All of these methods heavily rely on annotations
of question-answer (QA) pairs for model training. Intuitively, the more annotated pairs are
leveraged, the better performance a model can achieve. Thanks to the development of text-
related VQA datasets [8, 20, 36, 47], Text-VQA has achieved rapid progress.

However, the amount of Text-VQA annotations available is still limited due to the sparse
labeling of QA pairs in recent datasets. Consider for example the TextVQA dataset [41]
whose statistics are illustrated in Figure 1. It shows that only one or at most two QA pairs
are annotated in the training images. Meanwhile, we also compute the number of text words
presented in each image* and observe that most of the images contain at least 5 text words.
This observation indicates that scene text is not fully utilized in the annotations, and hence
not fully leveraged by recent methods. A natural question would be – can we fully take
advantage of text words in images without incurring extra annotation costs?

As illustrated in Figure 2, we propose to tackle the problem by learning to generate
large-scale and diverse text-related QA pairs from existing Text-VQA datasets, using the
generated QA pairs to expand the training set and ultimately improving Text-VQA models.

*We compute the average of different OCR tokens acquired by the Microsoft-OCR system [49] for the entire
training set.
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Towards this end, we introduce TAG, a text-aware QA generation model, that generates
novel text-related QA pairs at scale. It takes text words (the answer) as one of the inputs
and aims at generating a question corresponding to this answer by leveraging the rich visual
and scene textual cues. TAG is trained using the originally annotated QA pairs and adapts
to generate new QA pairs containing scene text words in images that are not utilized in
original annotations. No extra human annotation is required in our framework, so the size
and diversity of the training data could be easily and largely increased. Since our generation
process is disentangled with the training of Text-VQA models, our generated QA pairs can
be used by most of the recent methods.

In summary, we introduce a simple yet efficient text-aware generation approach, which
automatically and efficiently generates new QA pairs to improve the performance of the
current Text-VQA methods. The main contributions of our work are three-fold:

• We identify and analyze possible deficiencies of current Text-VQA datasets– sparse
annotations of QA pairs - and propose to better utilize unused scene text information
within each image to improve the model performance.

• To the best of our knowledge, TAG is the first method that explores scene text-related
QA pairs generation for improving Text-VQA tasks without additional labeled data.

• We consistently demonstrate the effectiveness of our method with two recent Text-
VQA models on two Text-VQA datasets. The experimental results suggest that the
existing Text-VQA algorithms can benefit from training with the high-quality and di-
verse QA pairs generated by our method.

2 Related Work

2.1 Text-related VQA
To study and evaluate the Text-VQA task, several scene text-based datasets are introduced,
including VizWiz [20], OCR-VQA[36], TextVQA [41], and ST-VQA [8]. With the help of
these datasets, numerous approaches have been proposed in recent years which increasingly
improve Text-VQA performance [3, 9, 16, 17, 21, 22, 23, 25, 32, 34, 41, 49, 50, 51, 54].
LoRRA [41] is an early work that extends the original VQA models [3, 23] with an ex-
tra OCR attention branch to select the answer from either a fixed word vocabulary or OCR
tokens. Recent studies [6, 11, 12, 14, 15, 19, 33, 45, 46, 52, 53] show the benefits of trans-
former for different vision, language and speech tasks. M4C [22] develops a transformer-
based architecture to fuse different input modalities and iteratively predicts answers through
a multi-step answer decoder. Inspired by M4C, more transformer-based models have been
proposed with varied structure modifications. Among them, CRN [32] constructs a graph
network to model the interactions between text and visual objects. LaAP-Net [21] predicts
a bounding box to explain the generated answer. SSBaseline [54] proposes to split the OCR
token features into separate visual and linguistic attention branches. SMA [16] reasons over
structural text-object graphs and produces answers in a generative way. LOGOS [34] in-
troduces a question-visual grounding pre-training task to connect question text and image
regions. SA-M4C [25] builds a spatial graph to explicitly model relative spatial relations be-
tween visual objects and OCR tokens. TAP [49] presents three text-aware pre-training tasks
to align representations among scene text, text words, and visual objects. However, most of

Citation
Citation
{Gurari, Li, Stangl, Guo, Lin, Grauman, Luo, and Bigham} 2018

Citation
Citation
{Mishra, Shekhar, Singh, and Chakraborty} 2019

Citation
Citation
{Singh, Natarajan, Shah, Jiang, Chen, Batra, Parikh, and Rohrbach} 2019

Citation
Citation
{Biten, Tito, Mafla, Gomez, Rusinol, Valveny, Jawahar, and Karatzas} 2019

Citation
Citation
{Anderson, He, Buehler, Teney, Johnson, Gould, and Zhang} 2018{}

Citation
Citation
{Biten, Litman, Xie, Appalaraju, and Manmatha} 2022

Citation
Citation
{Gao, Zhu, Wang, Li, Liu, Vanprotect unhbox voidb@x protect penalty @M  {}den Hengel, and Wu} 2021

Citation
Citation
{Gao, Li, Wang, Shan, and Chen} 2020

Citation
Citation
{Han, Huang, and Han} 2020

Citation
Citation
{Hu, Singh, Darrell, and Rohrbach} 2020

Citation
Citation
{Jiang, Natarajan, Chen, Rohrbach, Batra, and Parikh} 2018

Citation
Citation
{Kant, Batra, Anderson, Schwing, Parikh, Lu, and Agrawal} 2020

Citation
Citation
{Liu, Xu, Wu, Du, Jia, and Tan} 2020

Citation
Citation
{Lu, Fan, Wang, Oh, and Ros{é}} 2021

Citation
Citation
{Singh, Natarajan, Shah, Jiang, Chen, Batra, Parikh, and Rohrbach} 2019

Citation
Citation
{Yang, Lu, Wang, Yin, Florencio, Wang, Zhang, Zhang, and Luo} 2021

Citation
Citation
{Zeng, Zhang, Zhou, and Yang} 2021

Citation
Citation
{Zhang and Yang} 2021

Citation
Citation
{Zhu, Gao, Wang, and Wu} 2021

Citation
Citation
{Singh, Natarajan, Shah, Jiang, Chen, Batra, Parikh, and Rohrbach} 2019

Citation
Citation
{Anderson, He, Buehler, Teney, Johnson, Gould, and Zhang} 2018{}

Citation
Citation
{Jiang, Natarajan, Chen, Rohrbach, Batra, and Parikh} 2018

Citation
Citation
{Baevski, Zhou, Mohamed, and Auli} 2020

Citation
Citation
{Carion, Massa, Synnaeve, Usunier, Kirillov, and Zagoruyko} 2020

Citation
Citation
{Chen, Li, Yu, Elprotect unhbox voidb@x protect penalty @M  {}Kholy, Ahmed, Gan, Cheng, and Liu} 2020

Citation
Citation
{Devlin, Chang, Lee, and Toutanova} 2018

Citation
Citation
{Dosovitskiy, Beyer, Kolesnikov, Weissenborn, Zhai, Unterthiner, Dehghani, Minderer, Heigold, Gelly, etprotect unhbox voidb@x protect penalty @M  {}al.} 2020

Citation
Citation
{Guan, Wang, Lan, Chandra, Wu, Davis, and Manocha} 2022

Citation
Citation
{Liu, Lin, Cao, Hu, Wei, Zhang, Lin, and Guo} 2021

Citation
Citation
{Wang} 2022

Citation
Citation
{Wang, Chen, Wu, Luo, Zhou, Zhao, Xie, Liu, Jiang, and Yuan} 2022

Citation
Citation
{Zhao, Jiang, Jia, Torr, and Koltun} 2021

Citation
Citation
{Zhou, Palangi, Zhang, Hu, Corso, and Gao} 2020

Citation
Citation
{Hu, Singh, Darrell, and Rohrbach} 2020

Citation
Citation
{Liu, Xu, Wu, Du, Jia, and Tan} 2020

Citation
Citation
{Han, Huang, and Han} 2020

Citation
Citation
{Zhu, Gao, Wang, and Wu} 2021

Citation
Citation
{Gao, Zhu, Wang, Li, Liu, Vanprotect unhbox voidb@x protect penalty @M  {}den Hengel, and Wu} 2021

Citation
Citation
{Lu, Fan, Wang, Oh, and Ros{é}} 2021

Citation
Citation
{Kant, Batra, Anderson, Schwing, Parikh, Lu, and Agrawal} 2020

Citation
Citation
{Yang, Lu, Wang, Yin, Florencio, Wang, Zhang, Zhang, and Luo} 2021



4 STUDENT, PROF, COLLABORATOR: BMVC AUTHOR GUIDELINES

33

Text-VQA
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Q: “what does the ad on the 
left of the coca cola say?”

A: firefighters

Figure 2: The proposed Text-VQA framework. It consists of two parts: a text-aware visual
question-answer generation module (TAG), followed by a downstream Text-VQA model.
TAG is based on a multi-modal transformer architecture, which takes a single image and text
words (the answer) as input, and outputs a newly-generated question corresponding to the
input answer. The generated QA pairs from TAG together with the originally labeled data
are subsequently used to train Text-VQA models, leading to better Text-VQA performance.

the existing works focus on designing sophisticated architectures that leverage the annotated
text in an image and overlook the rich text information that is underused by the annotated
QA activities. We fully explore the embedded scene text in images and explicitly generate
novel QA pairs that can be used to boost the performance of downstream Text-VQA models.

2.2 Data Augmentation for VQA
Data augmentation has been demonstrated to be an effective approach to improve the per-
formance of the VQA task [1, 24, 26, 37, 39, 42, 48]. Kafle et al. [24] propose to generate
new questions using the existing semantic segmentation annotations and templates. Shah et
al. [39] introduce a cycle-consistent scheme generating question rephrasings to make VQA
models more robust to linguistic variations. Ray et al. [37] propose a consistency-improving
data augmentation module to make VQA models answer consistently. Agarwal et al. [1]
explore data augmentation to improve the VQA model’s robustness to semantic visual vari-
ations. Tang et al. [42] use data augmentation to inject proper inductive biases into the
VQA model. Wang et al. [48] introduce a generative model for cross-modal data augmen-
tation on VQA. Kant et al. [26] adopt the contrastive loss to make the VQA model robust
to linguistic variations in generated questions. However, these approaches are designed for
the traditional VQA systems that do not emphasize the importance of scene text in their
QA tasks. Our method is tailored for the problem of Text-VQA. It takes advantage of the
underexploited scene text in images and enlarges the training samples by generating novel
text-related QA pairs without the extra labeling cost.

3 Our Approach
The proposed framework is illustrated in Figure 2, which consists of a transformer-based
text-aware visual QA generation module named TAG, followed by a downstream Text-VQA
model. Our core module, TAG, carries out text-aware data augmentation tailored for the
Text-VQA task and generates novel QA pairs by leveraging underused scene text in an image.
After the TAG module generates a large amount of new QA pairs, we directly augment the
training data by combining the generated set and the originally labeled set. The augmented
set is used by the downstream Text-VQA models to boost the model performance.

The workflow of our method is as follows. Given an image, an OCR system and an
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Figure 3: The illustration of our proposed TAG. High-dimensional feature representations
are first extracted for three modalities, including extended answer words, visual objects, and
scene text. Then, a multi-modal transformer is used to model the interactions of different
modalities. Finally, a decoding module is used to predict the question corresponding to
the answer through iterative decoding with an auto-regressive mechanism. Left: Originally
labeled QA pairs are used for training. Right: During inference, detected OCR words are
used as a novel answer to generate a question. Best viewed in color.

object detector are used to detect scene text and visual objects, respectively. As illustrated
in Figure 3, our TAG takes the scene text words of interest (the answer words), the visual
objects and all the detected OCR tokens in the image as inputs and generates a question
explicitly corresponding to the answer. Specifically, the answer words, visual objects, and
all the OCR tokens are first represented by high-dimensional features (Section 3.1). Then,
the multi-modality information is fully aggregated through a transformer architecture with
the attention mechanism (Section 3.2). Finally, the enriched features are used to predict a
question to the answer through iterative decoding in an auto-regressive manner (Section 3.3).
More details can be found in the supplementary.

3.1 Multi-modality Feature Embeddings
We describe the feature embedding strategy of our work. The answer words, detected visual
objects, and all the detected OCR tokens are embedded as high-dimensional features and
then projected into a common d-dimensional embedding space.
Embedding of extended answer words. We follow [49] to use an extended representa-
tion to embed answer words. Given an answer input wans, we extend the words with labels
of objects wob j (detected from the object detector) and scene text OCR words wocr (gener-
ated from the OCR system) as a set of K text words. A trainable BERT-style model [14] is
adopted to extract the embedding of those text words, FFFans = { fff ans

1 , fff ans
2 , ..., fff ans

K }, where
k = {1,2, ...,K}, and fff ans

k is the d-dimensional feature vectors for kth text word. The embed-
dings of the set of words are used jointly as the feature of the answer.
Embedding of detected objects. Following M4C [22], we run a pre-trained 2D object de-
tector, Faster R-CNN [38] to localize M visual objects for each image. Two visual object fea-
tures, including appearance and location features are extracted and then combined together
to encode each detected object, FFFob j = { fff ob j

1 , fff ob j
2 , ..., fff ob j

m }, where m = {1,2, ...,M} and
fff ob j

m is the projected d-dimensional feature vectors for mth object. Specifically, the feature
vector output of the object detector (from the fc7 layer) is used to encode the appearance
feature and the relative bounding box coordinates are employed as the location feature.
Embedding of OCR tokens. For the N OCR tokens extracted by an OCR system, we
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construct the embedding for each token containing both its visual and text feature. The visual
feature extraction follows the strategy of the above visual object embedding. Additionally,
FastText [10] and PHOC features [2] are extracted for each OCR token to represent its textual
cues. A rich OCR representation is thus obtained, FFFocr = { fff ocr

1 , fff ocr
2 , ..., fff ocr

n }, where
n = {1,2, ...,N} and fff ocr

n is the projected d-dimensional feature vectors for nth OCR token.

3.2 Multi-modality Fusion
Once the feature embedding representation from individual modality, FFFans, FFFob j and FFFocr are
generated, they are able to dynamically attend to each other from a stack of L transformer
layers [43] as shown in Figure 3. The input sequence to the multi-modal transformer is
FFF = {FFFans,FFFob j,FFFocr}. The multi-modal transformer leverages feature embeddings from
different modalities and accordingly models interaction among them through the multi-head
attention mechanism. From the output of the multi-modal transformer, we extract a sequence
of d-dimensional feature vectors for each modality, which is an enriched feature from a joint
semantic embedding space.

3.3 Text-aware Visual Question Prediction
With the enriched embedding from the multi-modal transformer, the multi-step decoding
module predicts a question to the input answer and iteratively generates the question word
by word. At each iterative decoding step, we feed in an embedding of previously predicted
words, and then the next output word could be either selected from the fixed frequent word
vocabulary or from the extracted OCR tokens. Similar to [22, 49], two special tokens <
begin > and < end > are appended to the word vocabulary, where < begin > is used as
the input to the first decoding step and < end > indicates the end of the decoding process.
Alternatively, the decoding process ends when the maximum number of steps T is reached.

During training, our TAG is supervised with the binary cross-entropy loss applied using
the originally annotated QA pairs and adapts to generate novel QA pairs during generation.
During the QA pairs generation process, we pass an input answer, each of which is selected
from the extracted OCR tokens, into the TAG module and generate the corresponding ques-
tion accordingly. In this way, the generated QA pairs cover a diverse set of scene text which
was not directly exploited in the original annotation set. For answer selection, we perform a
simple yet efficient strategy that is feeding the OCR token with the largest bounding box as
the answer candidate to the proposed TAG. The intuition behind this design is that the scene
text with the largest bounding box region is likely to encode semantically meaningful infor-
mation for scene text-based understanding and reasoning. Also, scene text with a larger font
size has a higher chance to be detected correctly without recognition error in general. As we
illustrate in our experiments, our simple design facilitates a better understanding of the visual
content and provides promising Text-VQA performance. Note that, more high-quality QA
pairs could be continuously augmented with a more sophisticated answer-candidate selection
strategy. We leave this direction as future work.

4 Experiments
We evaluate TAG both qualitatively and quantitatively on the TextVQA [41] and the ST-VQA
[8] datasets. We first present a brief overview of the datasets and implementation details.
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Method OCR system Extra Data Val Acc. Test Acc.
CRN [32] Rosetta-en × 40.39 40.96
LaAP-Net [21] Rosetta-en × 40.68 40.54
SMA [16] SBD-Trans OCR × 43.74 44.29
SSBaseline [54] SBD-Trans OCR × 43.95 44.72
LOGOS [34] Microsoft-OCR × 50.79 50.65
M4C† [22] Microsoft-OCR × 44.50 44.75
M4C† + TAG Microsoft-OCR × 45.68 45.96
TAP [49] Microsoft-OCR × 49.91 49.71
TAP + TAG Microsoft-OCR × 52.54 52.57
LaAP-Net [21] Rosetta-en ST-VQA 41.02 41.41
SA-M4C [25] Google-OCR ST-VQA 45.40 44.60
SMA [16] SBD-Trans OCR ST-VQA 44.58 45.51
SSBaseline [54] SBD-Trans OCR ST-VQA 45.53 45.66
LOGOS [34] Microsoft-OCR ST-VQA 51.53 51.08
M4C† [22] Microsoft-OCR ST-VQA 45.22 -
M4C† + TAG Microsoft-OCR ST-VQA 46.33 46.38
TAP [49] Microsoft-OCR ST-VQA 50.57 50.71
TAP + TAG Microsoft-OCR ST-VQA 53.63 53.69

Table 1: TAG’s outperformance on the TextVQA dataset when trained on original and
augmented dataset under two settings. Note that M4C† is the improved version from [49].

Then, we empirically validate the effectiveness of our proposed method by comparing it
with the existing Text-VQA approaches. Our framework clearly outperforms previous work
by a significant margin on both datasets.

4.1 Datasets and Evaluation Metrics
TextVQA dataset [41] is a widely used benchmark for the Text-VQA task. It consists of
28,408 images sourced from the Open Images dataset [31], with human-annotated questions
that require reasoning over text in the images. We follow the standard split on the training,
validation and test sets [22, 49]. For each question, the answer prediction is evaluated based
on the soft-voting accuracy of 10 human-annotated answers [18, 22, 49].
ST-VQA dataset [8] is another popular dataset for the Text-VQA task. It contains 23,038
images from multiple sources including ICDAR 2013 [27], ICDAR 2015 [28], ImageNet
[13], VizWiz [20], IIIT STR [35], Visual Genome [30], and COCO-Text [44]. The standard
evaluation protocol on the ST-VQA dataset consists of accuracy and Average Normalized
Levenshtein Similarity (ANLS) [8].

4.2 Implementation Details
We use PyTorch to implement our TAG† that is used to augment the initially labeled data.
The augmented dataset is used to improve two recent Text-VQA models, M4C [22] and TAP
[49]. M4C† is a variant version [49] of M4C, where the detected object labels and scene text
tokens are also included in the text encoder, which further improves the performance.

†Our implementation is built upon the codebase: https://github.com/microsoft/TAP.
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Q: what is the first ingredient listed? 
A: water

Q: what is the name of this drink?
A: SAIGON

Q: what type of store is this?
A: duty free

Q: what is the name of the store?
A: URERTY

Q: what is the van's license plate number?
A: ls09 vgk

Q: what does the van say?
A: CTYPOLICE

Q: what kind of tickets can you buy?
A: ferry

Q: what letter is in the green?
A: F

Figure 4: We visualize the examples of the generated QA pairs (bottom in orange) by TAG
module compared with the original annotated QA pairs (top in blue) on the TextVQA training
set. "Q" and "A" refer to question and answer, respectively. Best viewed in color.

TAG. We project the multi-modality feature embedding to be d = 768 channels. We extract
the embedding of extended answer words using the same trainable structure as BERTBASE
[14]. Specifically, we initialize the weights of the model from the first three layers of
BERTBASE and eliminate the separate text transformer. In terms of the object embedding, a
Faster R-CNN object detector [38] pre-trained on the Visual Genome dataset [30] is adopted
to extract M = 100 top-scoring objects on each image and represents each object with its
appearance and location features. The Microsoft-OCR system [49] is used to extract OCR
tokens per image with each token represented with its appearance, location, FastText [10]
and PHOC features [2]. The multi-modality fusion module is a four-layer transformer with
12 attention heads, which has the same hyper-parameters as BERTBASE . We use T = 30
decoding steps to predict the output question word by word in an auto-regressive manner.
Training parameters. Experiments are conducted on 4 Nvidia P6000 GPUs. We train TAG
for 24K iterations with a batch size of 128. We adopt the Adam optimizer [29] with a learning
rate of 1e-4 and a staircase learning rate schedule, where we multiply the learning rate by 0.1
at 14K and at 19K iterations. We keep the original parameter settings of downstream Text-
VQA models except that we increase their maximum iteration in proportion to the increased
size of the augmented data to accommodate the enlarged number of training samples.

4.3 Main Results
TextVQA dataset. To perform a fair comparison with prior work, we conduct experiments
in both the constrained setting (top part of Table 1) and the unconstrained setting (bottom
part of Table 1) on the TextVQA dataset [41].‡ The number of our augmented training
QA examples for Text-VQA is 69.2K compared with 34.6K for the original one. In the
constrained setting (top), our TAG improves the corresponding M4C and TAP baselines by
1.18% and 2.63% on the validation set, respectively. We note that although LOGOS [34] in
Table 1 uses an extra grounding dataset with 1.1 million images for pre-training and yet our
method performs better. In the unconstrained setting (bottom), TAG further boosts M4C and
TAP baselines by 1.11% and 3.06% on the validation set, respectively. On the TextVQA test
set, TAG also obtains significant performance gains over existing methods. This validates
the effectiveness of TAG. We also visualize the generated QA pairs of our TAG in Figure
4. It shows that our TAG generates meaningful QA pairs that are novel compared to the
originally annotated ones.

‡The constrained setting means training without extra data and the unconstrained one indicates otherwise.

Citation
Citation
{Devlin, Chang, Lee, and Toutanova} 2018

Citation
Citation
{Ren, He, Girshick, and Sun} 2015

Citation
Citation
{Krishna, Zhu, Groth, Johnson, Hata, Kravitz, Chen, Kalantidis, Li, Shamma, etprotect unhbox voidb@x protect penalty @M  {}al.} 2017

Citation
Citation
{Yang, Lu, Wang, Yin, Florencio, Wang, Zhang, Zhang, and Luo} 2021

Citation
Citation
{Bojanowski, Grave, Joulin, and Mikolov} 2017

Citation
Citation
{Almaz{á}n, Gordo, Forn{é}s, and Valveny} 2014

Citation
Citation
{Kingma and Ba} 2014

Citation
Citation
{Singh, Natarajan, Shah, Jiang, Chen, Batra, Parikh, and Rohrbach} 2019

Citation
Citation
{Lu, Fan, Wang, Oh, and Ros{é}} 2021



STUDENT, PROF, COLLABORATOR: BMVC AUTHOR GUIDELINES 9

Method Extra Data Val Acc. Val ANLS Test ANLS
CRN [32] × - - 0.483
LaAP-Net [21] × 39.74 0.497 0.485
SMA [16] × - - 0.486
SA-M4C [25] × 42.23 0.512 0.504
SSBaseline [54] × - - 0.509
LOGOS [34] × 44.10 0.535 0.522
M4C† [22] × 42.28 0.517 0.517
M4C† + TAG × 44.52 0.540 0.529
TAP [49] × 45.29 0.551 0.543
TAP + TAG × 50.18 0.595 0.586
SSBaseline [54] TextVQA - - 0.550
LOGOS [34] TextVQA 48.63 0.581 0.579
M4C† [22] TextVQA 46.60 0.560 0.552
M4C† + TAG TextVQA 48.69 0.579 0.571
TAP†† [49] TextVQA, TextCaps, OCR-CC 50.83 0.598 0.597
TAP + TAG TextVQA 53.53 0.620 0.602

Table 2: Our framework outperforms prior work on the ST-VQA dataset. Note that
M4C† is the improved version from [49]. Specifically, our model with TextVQA outperforms
the SOTA approach TAP†† [49] that is pre-trained with extra large-scale data from external
TextCaps [40] and OCR-CC [49] datasets.

ST-VQA dataset. We also compare our approach with the state-of-the-art (SOTA) meth-
ods under both the constrained setting and the unconstrained setting on the ST-VQA dataset
[8]. We compute the accuracy and ANLS score as the evaluation metrics. The number of
the newly built training QA examples for the ST-VQA task after augmentation is 46.8K
compared with 23.4K for the original one. Table 2 suggests that TAG achieves SOTA perfor-
mance and significantly outperforms the baselines. In particular, TAP [49] achieves 50.83%,
and 0.598 in terms of the accuracy and ANLS score on the validation set with additional
TextVQA and 1.4 million large-scale pre-training data, while TAG improves these results by
a significant 2.70% and 0.022 with only additional TextVQA data. In addition, we submit
the prediction results of test set on the ST-VQA test server. The results show that TAG with
TAP achieves the SOTA performance with ANLS score of 0.602 on the test set. Without
bells and whistles, our approach greatly outperforms the baselines, M4C [22] and TAP [49].

4.4 Ablation Studies

We conduct extensive ablation studies to demonstrate the effectiveness of TAG using TAP
[49] under the constrained setting on the TextVQA validation set.
Contribution of each modality in TAG. To understand the contribution of different input
modalities to the success of TAG, Table. 3 summarizes the performance of our framework
when a certain modality is removed. It suggests that when both the visual objects and OCR
tokens modalities are removed, the performance of our TAG decreases by 3.78%. On the
other side, when removing the visual objects modality and OCR tokens modality separately,
the performance drops by 3.59% and 3.41%, respectively.
Impact of the answer selection strategy. To better explore the performance of our TAG, and
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Ans. Obj. OCR. Val Acc.
✓ 48.76
✓ ✓ 48.95
✓ ✓ 49.13
✓ ✓ ✓ 52.54

Table 3: Ablation study of TAG with TAP [49] under constrained setting on TextVQA vali-
dation set. "Ans.", "Obj." and "OCR." refer to embedding of answer words, detected objects
and OCR tokens, respectively.

Answer Selection Val Acc.
random 49.26
largest 52.54

top three 52.73
top five 52.19

Table 4: Ablation study of TAG with TAP [49] under constrained setting on TextVQA val-
idation set. Random means a random OCR token is selected as the answer input to TAG,
while top three means the top three largest OCR tokens are selected.

understand how different answer selection strategies would affect the model performance, we
design several experiments over the choice of input answer selection strategy. Our method
adopts the largest OCR word as the answer candidate for TAG. We compare this strategy with
other possibilities in Table. 4. The table shows that, if we use a random OCR token as the
input answer, the performance drops by 3.28%. On the other hand, if we increase the number
of answer candidates by including the top-3 largest OCR tokens to augment the labeled data
by 3×, the performance boosts additional 0.19% as compared to the largest strategy while it
introduces 3× training time. To achieve a better balance between training efficiency and ac-
curacy, we consider the OCR token with the largest bounding box as our final setting for the
input answer to TAG. As we have mentioned previously, more high-quality QA pairs could
be continuously augmented with a more sophisticated answer-candidate selection strategy.
We leave this direction for future work.

5 Conclusion
We propose a novel architecture TAG, a text-aware visual question-answer (QA) generation
method to deal with the sparse annotation of existing Text-VQA datasets. Our approach
leverages the rich yet underexplored visual and scene text information and directly enlarges
the existing training set by generating high-quality and rich QA pairs without extra labeling
cost. Without bells and whistles, experimental results show that our generated QA pairs
boost the performance of recent Text-VQA models by a large margin on both TextVQA and
ST-VQA datasets.
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