LOCL : Learning Object-Attribute Composition using Localization

Background

The problem of unseen O-A associations has been well studied in the field of Composition Zero shot Learning (CZSL); however, the performance of existing methods is limited in challenging scenes.

LOCL generalizes CZSL to objects in cluttered/more realistic settings.

Approach

Localized Feature Extractor (LFE) generates proposals that are likely to contain objects

The composition Classifier takes the \rightarrow proposal features and \longrightarrow final object attribute refine with objectattribute semantics

Results

Methods	MIT-State			UT-Zappos			CGQA		
	Seen	Unseen	AUC	Seen	Unseen	AUC	Seen	Unseen	AUC
Attop	14.3	17.4	1.6	59.8	54.2	25.9	11.8	3.9	0.3
LabelEmbed	15	20.1	2.0	53.0	61.9	25.7	16.1	5	0.6
TMN	20.2	20.1	2.9	58.7	60.0	29.3	21.6	6.3	1.1
SymNet	24.2	25.2	3.0	49.8	57.4	23.4	25.2	9.2	1.8
CompCos	25.3	24.6	4.5	59.8	62.5	28.1	28.1	11.2	2.6
ProtoProp	-	-	-	62.1	65.5	34.7	26.4	18.1	3.7
BMP-Net	38.6	21.7	6.0	87.3	64.5	49.7	-	-	-
CGE	32.8	28.0	6.5	64.5	71.5	33.5	31.4	14	3.6
LOCL (Ours)	35.3	36.0	7.7	68.0	76.7	37.9	29.6	26.4	4.2

Performance comparison with SOTA methods on simple datasets (MIT-states & UT-Zappos) and challenging dataset (CGQA). Table below shows effectiveness of the Localized Feature Extractor (LFE)

Methods	Our	LFE		CGQA		MIT-States		
	BB		Seen	Unseen	AUC	Seen	Unseen	AUC
	X	X	25.2	9.2	1.8	24.2	25.2	3.0
SymNet	✓	×	25.3	9.3	1.8	26.6	26.1	3.5
	1	✓	27.7	13.5	2.0	28.7	27.7	3.8
	X	×	28.1	11.2	2.6	25.3	24.6	4.5
CompCos	✓	×	28.4	13.5	2.8	25.6	24.8	4.5
	✓	✓	28.9	16.7	2.9	27.9	26.7	5.1
	X	X	31.4	14.0	3.6	32.8	28	6.5
CGE	✓	×	31.4	19.3	3.8	33.3	28	6.5
	✓	✓	31.9	26.1	4.1	36.3	29.8	6.6
LOCL	✓	✓	29.6	26.4	4.2	35.3	36.0	7.7

The refined featured are used to make the prediction

Object Localization leads to Right object-attribute association in a cluttered environment.

This research was in parts supported by NSF SI2-SSI award #1664172 and US Army Research Laboratory (ARL) under agreement # W911NF2020157

Challenging Scenarios

(1) GT: ripe apple

Predictions {SymNet: small bird, CGE:clear tree, CompCos: blue berries, **LOCL:** {red apple, ripe apple}}

AUTHORS:

SATISH KUMAR, ASM Iftekhar, Ekta Prashnani, B.S. Manjunath

Correct Misclassified

(2)GT: blue bird

Predictions {SymNet: green bird, CGE:lying bird, CompCos: cooked bird, **LOCL:** blue bird}

