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Abstract

Lifelong object re-identification incrementally learns from a stream of re-identification
tasks. The objective is to learn a representation that can be applied to all tasks and that
generalizes to previously unseen re-identification tasks. The main challenge is that at
inference time the representation must generalize to previously unseen identities. To
address this problem, we apply continual meta metric learning to lifelong object re-
identification. To prevent forgetting of previous tasks, we use knowledge distillation
and explore the roles of positive and negative pairs. Based on our observation that the
distillation and metric losses are antagonistic, we propose to remove positive pairs from
distillation to robustify model updates. Our method, called Distillation without Positive
Pairs (DwoPP), is evaluated on extensive intra-domain experiments on person and vehicle
re-identification datasets, as well as inter-domain experiments on the LReID benchmark.
Our experiments demonstrate that DwoPP significantly outperforms the state-of-the-art.

1 Introduction
Object re-identification (ReID) aims to associate the identity of a query image with those in a
gallery set [18, 75]. It is applied to many applications, including person re-identification [5,
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Figure 1: Lifelong Object ReID with continual meta-metric learning. Unlike conventional
object re-identification, data are presented sequentially in discrete tasks of disjoint classes.
Data from previous tasks are unavailable in successive ones and the learner must incre-
mentally update when a new task arrives. Furthermore, in object re-identification the test
identities are not seen during training, which demands generalization of the learned metric.

31, 72], vehicle re-identification [24, 39, 79], and face verification [60, 61]. Most existing
approaches assume that the test and training dataset are drawn from the same distribution
and that all training data is available jointly when training the network [31, 39, 41, 75, 79].
In domain generalization ReID [2, 9, 11, 47, 56] all source domain data is assumed available
during training. This assumption is not realistic for many applications as all training data
might not be available from the start and its distribution could vary over time. In addition,
the trained system could be applied at inference time to new data never seen during training.
Only recently, the problem of Lifelong ReID has been proposed [50]. This setting requires
learning from a sequence of domains, and evaluates the algorithm on unseen domains.

Continual learning [12, 38, 44, 46] addresses the problem of learning from non-stationary
streams of data. It has developed several techniques including regularization-based meth-
ods [1, 14, 26, 35, 74], parameter-isolation [42, 43, 45, 53], and replay-based methods [16,
36, 62, 67, 68, 70]. In this paper we consider exemplar-free continual learning where it
is not allowed to save any samples (exemplars) of previous tasks for the problem of ob-
ject re-identification. This requirement is out of the privacy considerations in person ReID
problems.

Most continual learning methods specifically consider the incremental learning of clas-
sification problems. The considered setup for object re-identification (Fig. 1) is different in
two main aspects. Firstly, they usually do not incrementally learn a classifier, instead they
incrementally learn a feature representation. Secondly, the aim is to perform evaluation on
new unseen tasks. So the real goal is to incrementally learn a metric space that generalizes
to previously unseen tasks. Pu et al. [50] propose a method to address the first problem but
ignore the second consideration: the representation should generalize to unseen tasks.

Meta-learning [3, 8, 13, 22, 48, 55, 59] focus on generalising to unseen tasks and has
been applied to few-shot learning [4, 27, 33, 57, 65, 71]. Object ReID can be considered a
few-shot learning problem, since the object identities at test time are not shown during the
training and we only have few support images. To exploit the generalization capability of
meta learning, Chen et al. [6] propose Deep Meta Metric Learning (DMML) that formulates
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the deep metric learning as a meta learning problem. Since the main challenges of object
re-identification are learning from a sequences and generalization to previously unseen do-
mains, in this paper we propose Continual Meta Metric Learning to address this problem.

To further endow continual meta metric learning with a mechanism to mitigate forget-
ting knowledge from previous tasks, we introduce a temporary classifier for the support set
and study the potential of directly applying knowledge distillation [19, 32]. However, we
find that the distillation and metric learning losses are antagonistic. We therefore propose
Distillation without Positive Pairs (DwoPP). DwoPP, different from naive distillation, which
distills knowledge from the previous to the current task classifier over all classes in the
current task, distills only using negative examples. In this way, we avoid the antagonistic re-
lationship between the metric and distillation losses which is from positive pairs distillation.

The main contributions of our paper are: 1) we show that meta metric learning is supe-
rior to global metric learning for object re-identification; 2) we explicitly explore the roles
of positive and negative pairs in distillation and propose a novel distillation scheme called
DwoPP for Continual Meta Metric Learning; 3) we propose task splits for evaluation of
continual metric learning methods on intra-domain object ReID for three ReID datasets and
evaluate on much longer sequences than existing benchmarks; and 4) we perform extensive
experimental analysis demonstrating that, DwoPP achieves significantly better performance
on person and vehicle ReID, as well as on the lifelong re-identification (LReID) bench-
mark [50].

2 Related work
Object re-identification and metric learning. Metric learning has been widely applied
to object re-identification [18, 75], mainly focusing on person ReID [5, 31, 72, 76], vehi-
cle ReID [24, 39, 79] and face verification [60, 61, 76]). Deep metric learning methods
can be divided into three categories based on the loss used: contrastive loss with pairwise
inputs [10], triplet loss with triplet inputs [21], and N-pair loss with batch inputs [54]. In gen-
eral, deep metric learning works well but does not take generalization of the learned metrics
into account and neglects relationships between inter-class samples. DMML [6] formulates
metric learning for object re-identification from a meta learning perspective. We build upon
DMML for our continual learning view of meta metric learning.
Continual learning. Continual learning methods can be categorized into three groups:
parameter-isolation, regularization-based and replay-based methods [12]. The most relevant
to our work are regularization-based methods [1, 26, 32, 35, 35, 49, 73, 74]. Knowledge dis-
tillation is a widely used regularization method which decreases forgetting by either aligning
features [36, 67] or the predicted probabilities [32]. To adapt knowledge distillation to Con-
tinual Meta Metric Learning, we propose a variant of knowledge distillation by introducing
a temporary classifier for the current support set, and more importantly the distillation in the
paper is without considering positive pairs. Replay-based continual learning overcomes for-
getting by saving a set of exemplars from each task [16, 23, 23, 64, 67, 68, 68, 70]. We focus
on exemplar-free continual learning. And continual learning applied to persons in particular
has privacy considerations which makes retaining data problematic.
(Incremental) Meta learning. Meta learning based on metrics or optimization-based
approaches are the main directions of current research [65]. ProtoNets [55] and Rela-
tionNets [58] are canonical representatives of metric-based approaches, while MAML [13]
and Reptile [48] are representative optimization-based methods. Incremental meta learning
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(IDA [34], ERD [63]) methods have been mainly developed for incremental few-shot learn-
ing, however, they can also be applied to lifelong object ReID and we will compare to them
in the experimental section. There are a few methods on incremental metric learning which
approach the problem as one of representation learning with a metric-based classification
loss. Examples include CRL [76], FGIR [7], and AKA [50]. However, these works all focus
on distillation over seen classes and thus neglect the need to recognize unseen identities.

3 Methodology

3.1 Preliminaries
There are two main approaches to metric learning applied to object ReID: those based on
global optimization of a metric embedding over the training set, and those based on episodic
meta learning. Most global optimization metric learning methods minimize a metric loss
over the whole dataset D = (X,Y) of inputs X and corresponding labels Y. For comparison
in this paper we use the popular softmax-triplet loss as used in Bag-of-Tricks (BoT) [41].
Deep meta metric learning (DMML). In DMML [6], the authors instead formulate metric
learning as a meta learning problem. They decompose the training data into a series of sub-
tasks, called episodes in meta learning, and then learn a meta metric that generalizes well to
all sub-tasks. Assuming the unseen test task is drawn from the same distribution of sub-tasks
from the training set, this learned meta metric should generalize to this unseen test task.

Assume that we sample K episodes in total for training, that each episode Ek is composed
of N classes, and that each class contains ns images in the support set Sk and nq images in
the query set Qk. In each episode, we learn the meta metric to correctly predict the query
samples from support samples. The learning problem for DMML is:

θ
∗ = argmin

θ
Ek∈[1,K]

[
Leps(θ ;Sk,Qk)

]
(1)

where Leps is the episode level hard-mining metric loss proposed in DMML [6].
The episodic loss Leps is defined in terms of positive and negative pairs. In the current

episode Ek with the class set C, a query point qc ∈ Qk is drawn from a specific class c ∈ C.
We construct the positive pairs [qc,sc] from the query point and support points sc ∈ Sk from
the class c, and negative pairs [qc,sc′ ] from the query point and support points sc′ ∈ Sk from
different classes c′ ̸= c. Hard mining is performed over the positive pairs by finding largest
Euclidean distance from qc to a positive support sample dc = maxsc∈Sk d(qc,sc), and over
negative pairs by finding the smallest distance from qc to the a negative support sample dc′ =
minsc′∈Sk d(qc,sc′). Leps is defined in terms of these hard-mined distances (τ is a margin):

Leps(θ ;Sk,Qk) = ∑
qc∈Qk

log(1+ ∑
c′∈C\{c}

exp(dc′ −dc + τ)), (2)

3.2 Continual Metric Learning
In continual metric learning, tasks t ∈ [1,T ] arrive sequentially as disjoint datasets Dt . The
aim is to learn θt incrementally in a training session for each task t and to ensure it accumu-
lates knowledge from the previous tasks so as to generalize better to unseen test tasks:

θ
∗
t = argmin

θt
Lcml(θt ;Dt). (3)
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Figure 2: (a) Comparing continual meta-metric learning (DMML-FT [6]) with continual
metric learning (BoT-FT [41]). We finetune on 10 equally split Market-1501 tasks. Upper
bounds are joint training on all data. (b) Comparison between DwPP and DwoPP (class 1 is
the positive class). The old model has never seen class 1 and so likely produces an output
less than 1 although we want positive pairs to map to the exact same point in latent space.
Also, the dominance of the positive class inhibits distillation of negative pair information.

And the data from previous tasks (i.e. Dt ′ for t ′ < t) are not available to the learner at task t.
Eq. 3 defines the continual learning setup where one only has access to data of a single task
at a time. It is a general equation applicable to continual learning setups. In Eq. 3 Lcml could
be replaced with a metric learning loss (yielding continual metric learning) or with a meta
metric learning loss, like Eq. 1, to obtain continual meta metric learning. The challenge of
continual learning is preventing forgetting of previous knowledge.

Here we consider two different losses for Lcml in Eq. 3, either based on meta-learning
(like DMML [6]) or on the softmax (like BoT [41]). The majority of Person Re-Identification
approaches (including the LReID benchmark [50]) are based on the softmax-triplet loss. We
compare these methods in the Continual Metric Learning setting on Market-1501 in Fig. 2(a)
by simply applying fine-tuning (FT) without any mitigation of forgetting. We clearly see
that continual metric learning is quickly surpassed by continual meta-metric learning. The
underlying reason for this marked improvement is that re-identification aims to recognize
unseen objects (each object identity is represented by only one query image at test time).
This is the central characteristic of few-shot recognition. Instead, the conventional softmax-
triplet loss optimizes recognition on seen classes. It does not explicitly aim for generalization
to unseen classes. Moreover, the focus on current task classes can also lead to increased
forgetting of previous classes. The meta learning DMML loss, however, tends to learn a
better representation space that generalizes to future unseen tasks and thus suffers less from
forgetting. In brief, DMML is a more principled approach for continual metric learning than
the softmax-triplet loss and we propose to use DMML as the basis.

3.3 Distillation without Positive Pairs (DwoPP)
To adapt the DMML loss defined in Eq. 2 to continual metric learning, we compute it for
task t over episodes Et

k drawn only from the current task data Dt . We denote the support set
and query set of each episode during task t as St

k and Qt
k. Then the DMML loss is defined

with the current model fθt as Leps(θt ;St
k,Q

t
k) (see Eq. 2).

Episodic meta learning with the DMML loss will not mitigate forgetting in a continual
metric learning. Knowledge Distillation [19, 32] is a common technique for alleviating
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catastrophic forgetting when learning over a sequence of tasks. Note, however, distillation
assumes that a classifier over classes from the previous tasks is available on which to perform
knowledge distillation – something that for continual meta metric learning we do not have.
However, based on the sampled episodes we can construct two temporary classifiers, one
based on the previous and one based on the current tasks’ feature extractor. We can then
define a new distillation loss in terms of these temporary classifiers.
Class Prototypes. To construct the temporary classifier, we compute prototypes as the
centroid of embedded samples of each class uc (c is class label):

uc =
1
ns

∑
(xi,yi)∈St

k

fθ (xi)δc(yi), (4)

where δc(y) = 1 ⇔ y = c is an indicator function.
DwPP: Distillation with Positive Pairs. With the class prototypes uc, the prediction for
class c ∈ C of query image x̂ ∈ Qt

k with the model fθt is given by:

gc(St
k, x̂;θ) =

[exp(−d( fθ (x̂),uc))]
1/T

∑c′∈C[exp(−d( fθ (x̂),uc′))]1/T , (5)

where T is the temperature and d is the Euclidean distance. These predictions are used to
distill knowledge from task t-1 into task t by constructing two temporary classifiers, one
using θt and another using θt−1, and considering all negative and positive pairs:

LDwPP(θt ;θt−1,St
k,Q

t
k) = ∑

x̂∈Qt
k

KL
[
g(St

k, x̂;θt−1) ||g(St
k, x̂;θt)

]
. (6)

Here g is a classifier constructed by concatenating the predictions gc defined in Eq. 5 for all
classes in the episode.

Knowledge distillation for continual meta metric learning requires careful attention to
which pairs are included in the distillation loss. Consider the hypothetical case illustrated
in Fig. 2(b) where we show the predictions of the two temporary classifiers (class 1 is the
query class). In task t, the new classes from Dt are not well-discriminated from each other –
that is, the margin between positive and negative pairs in Dt is not guaranteed by the model
from task t −1 and the predicted probabilities are distributed as in the upper left column of
Fig. 2(b). After learning task t we would like it to be a peaked distribution around the correct
class, and simultaneously we also wish to maintain the relative probabilities of all classes
(via knowledge distillation). Although this distillation will maintain model stability and
mitigate forgetting, the estimate of the old model for the correct label is likely to be unreliable
and will prevent the metric loss from pushing similar labels to the same position in the
embedding space. Furthermore, the dominance of the positive class prevents distillation of
the relevant negative pair information (also known as dark knowledge [19]), which weakens
the alignment of classes in the feature space.

In essence, the metric and distillation losses are antagonistic due to the inclusion of
positive pairs in knowledge distillation. Thus we propose to remove positive pairs from
distillation. As shown in the right column of Fig. 2(b), since the other classes are negatives
for class 1, they can be easily aligned with the previous probabilities to overcome forgetting.
At the same time, the peaked distribution in the bottom left of Fig. 2(b) can also be achieved
by the metric loss. To further analyze the role of positive and negative pairs, we decouple the
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Figure 3: mAP and Rank-1 performance. Methods with “*” use the softmax-triplet loss.

KL divergence into positive and negative pair distillation as proposed by DKD [77], showing
that positive pair distillation leads to performance degradation (see Table 3).
DwoPP: Distillation without Positive Pairs. To remove positive pairs from DwPP dis-
tillation, we exclude class ŷ which is the class label of the query image x̂ ∈ Qt

k from the
temporary classifier and rewrite the Eq. 5 as:

g′c(S
t
k, x̂, ŷ;θ) =

[exp(−d( fθ (x̂),uc))]
1/T

∑c′∈C\{ŷ}[exp(−d( fθ (x̂),uc′))]1/T (7)

Then the DwoPP distillation can be rewritten as:

LDwoPP(θt ;θt−1,St
k,Q

t
k) = ∑

(x̂,ŷ)∈Qt
k

KL[g′(St
k, x̂, ŷ;θt−1) ||g′(St

k, x̂, ŷ;θt)]. (8)

With the above defined DwoPP distillation loss and episode DMML loss, the continual met-
ric learning loss function for each episode is defined as:

Lcml(θt ;θt−1,St
k,Q

t
k) = Leps(θt ;St

k,Q
t
k)+λLDwoPP(θt ;θt−1,St

k,Q
t
k). (9)

To demonstrate the necessity of removing positive pairs from the distillation, we compare
DwPP and DwoPP in Sec. 4 and perform an ablation on T in both.

4 Experimental Results

4.1 Experimental setup
Datasets for Intra-domain Object ReID. We propose continual metric learning splits for
two Person ReID datasets and one vehicle ReID dataset. (1) Market-1501 [80] consists
of 32,668 images of 1,501 identities captured by 6 cameras. The dataset is divided into a
training set with 12,968 images of 751 identities and a test set containing 3,368 query images
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and 19,732 gallery images of 750 identities. For continual metric learning setup, we split the
751 training identities into 10 disjoint tasks, each with 75 identities (the first with 76). (2)
MSMT17_V2 [66] consists of 126,441 images of 4101 persons captured by 15 cameras. Its
training set includes 30,248 images of 1041 persons, and its test set covers the remaining
3060 persons with 11,659 query images and 82,161 gallery images. For MSMT17_V2, we
split the training persons into 10 tasks also, each task with 104 persons (the first task with
105 persons). (3) VeRi-776 [37] contains 49,357 images of 776 vehicles, which are captured
by 20 cameras. Among them, 576 vehicles are used for training and the remaining 200 are
used for testing. In total, VeRi-776 consists of 37,778 training images, 1,678 query images,
and 11,579 gallery images. For continual metric learning, we split the training 576 vehicles
into 10 tasks, each task with 57 vehicles (the first task with 63 vehicles).
The Lifelong ReID (LReID) benchmark. We adapt the train set of the inter-domain LReID
benchmark by building it from four datasets: Market-1501 [80], CUHK-SYSU ReID [69],
MSMT17_V2 [66], and CUHK03 [30].* After training, the model is evaluated on the test
query and gallery sets LReID-Seen of these four datasets (i.e. over seen domains). We also
test on LReID-Unseen test set which combines seven person ReID datasets: VIPeR [15],
PRID [20], GRID [40], i-LIDS [81], CUHK01 [29], CUHK02 [28], and SenseReID [78].
Implementation details. We follow the same network structure and training strategy as
DMML [6] for our method. The ResNet-50 [17] pretrained on ImageNet [52] works as our
feature extractor for all methods. The feature extractor is further trained during continual
training. We use the Adam optimizer [25] with a base learning rate of LR = 0.0002 and
weight decay of 0.0001. We set the trade-off coefficient to λ = 1.0, the margin as τ = 0.4,
and the temperature to T = 1.0 for DwoPP and T = 10.0 for DwPP. The number of classes,
support and query images in each episode are N = 32,ns = 5,nq = 1.
Compared methods and metrics. Our evaluation is divided into two parts: (1) To com-
pare with conventional continual learning methods, we train models with the softmax-triplet
loss of BoT [41]. For methods using this loss without exemplars, we selected AKA [50],
PASS [82], and LwF [32]. For methods using exemplars, we selected FT+, iCaRL [51] and
LwF+ [32]. (2) For comparison with incremental meta learning methods, we build upon the
DMML loss [6]. For methods without exemplars we selected IDA [34]. For methods with
exemplars, we selected ERD [63]. Note that AKA is the state-of-the-art in LifelongReID and
IDA is the state-of-the-art in incremental meta learning. For all exemplar-based methods we
store 500 exemplars for all experiments. We use mean Average Precision (mAP) and Accu-
racy at Rank-1 as metrics [72]. We compute the mAP and Rank-1 Accuracy of the model on
the unseen test set after each task. All results are averages over three runs.

4.2 Comparative performance evaluation

Intra-domain Lifelong Object ReID. Fig. 3 gives the mAP and Rank-1 curves on Market-
1501, MSMT17_V2, and VeRI-776. We report the performance of all methods after task
t = 10 and the average metrics over all training sessions in Table 1. On all three datasets,
finetuning with softmax-triplet loss is always sub-optimal to finetuning with the meta metric
loss. The performance gap between the mAP for the DMML-FT and BoT-FT after the last
task is 25.8, 4.3, and 5.0 on three datasets, respectively. Note that the two losses result in
a similar joint training performance. This demonstrates that meta metric learning is more
suitable to the Continual Metric Learning problem, as we discussed in Sec. 3.2. For contin-

*We removed DukeMTMC-reID from the LReID benchmark due to its retraction on account of privacy issues.

Citation
Citation
{Wei, Zhang, Gao, and Tian} 2018

Citation
Citation
{Liu, Liu, Ma, and Fu} 2016

Citation
Citation
{Zheng, Shen, Tian, Wang, Wang, and Tian} 2015

Citation
Citation
{Xiao, Li, Wang, Lin, and Wang} 2016

Citation
Citation
{Wei, Zhang, Gao, and Tian} 2018

Citation
Citation
{Li, Zhao, Xiao, and Wang} 2014

Citation
Citation
{Gray and Tao} 2008

Citation
Citation
{Hirzer, Beleznai, Roth, and Bischof} 2011

Citation
Citation
{Loy, Xiang, and Gong} 2010

Citation
Citation
{Zheng, Gong, and Xiang} 2009

Citation
Citation
{Li, Zhao, and Wang} 2012

Citation
Citation
{Li and Wang} 2013

Citation
Citation
{Zhao, Tian, Sun, Shao, Yan, Yi, Wang, and Tang} 2017

Citation
Citation
{Chen, Zhang, Lu, and Zhou} 2019{}

Citation
Citation
{He, Zhang, Ren, and Sun} 2016

Citation
Citation
{Russakovsky, Deng, Su, Krause, Satheesh, Ma, Huang, Karpathy, Khosla, Bernstein, etprotect unhbox voidb@x protect penalty @M  {}al.} 2015

Citation
Citation
{Kingma and Ba} 2015

Citation
Citation
{Luo, Gu, Liao, Lai, and Jiang} 2019

Citation
Citation
{Pu, Chen, Liu, Bakker, and Lew} 2021

Citation
Citation
{Zhu, Zhang, Wang, Yin, and Liu} 2021

Citation
Citation
{Li and Hoiem} 2017

Citation
Citation
{Rebuffi, Kolesnikov, Sperl, and Lampert} 2017

Citation
Citation
{Li and Hoiem} 2017

Citation
Citation
{Chen, Zhang, Lu, and Zhou} 2019{}

Citation
Citation
{Liu, Majumder, Achille, Ravichandran, Bhotika, and Soatto} 2020{}

Citation
Citation
{Wang, Liu, Bagdanov, Herranz, Jui, and vanprotect unhbox voidb@x protect penalty @M  {}de Weijer} 2022{}

Citation
Citation
{Ye, Shen, Lin, Xiang, Shao, and Hoi} 2021



KAI WANG ET AL.: POSITIVE PAIR DISTILLATION CONSIDERED HARMFUL 9

Metric: mAP Rank-1 Accuracy
Dataset: Market MSMT17 VeRi-776 Market MSMT17 VeRi-776

Based on episodic optimization with DMML loss [6]
Joint training: 82.2 44.7 73.6 92.6 68.9 92.1

Sessions: last avg last avg last avg last avg last avg last avg
without exemplars

DMML-FT (ICCV’19) 56.3 49.1 10.9 10.0 30.8 29.3 77.8 71.5 28.9 27.4 70.3 62.4
IDA (ECCV’20) 32.2 37.8 19.2 16.8 21.0 18.4 58.7 63.1 45.6 38.2 56.6 45.4

DwPP 57.8 48.4 16.3 13.3 30.9 28.9 78.1 70.7 39.0 33.9 71.7 63.3
Ours (DwoPP) 67.2 57.6 23.8 19.1 39.9 35.3 84.6 77.1 51.0 42.6 78.5 69.3

with 500 exemplars in total
ERD (CVPRW’22) 63.5 53.9 21.7 17.2 38.2 33.8 81.8 74.5 46.6 39.4 72.9 65.5

Based on global optimization with softmax-triplet loss from BoT [41]
Joint training: 82.4 43.2 69.2 93.0 71.1 92.7

Sessions: last avg last avg last avg last avg last avg last avg
without exemplars

BoT-FT (CVPR’19) 30.7 33.5 6.6 8.4 25.8 24.9 55.4 58.8 20.6 25.4 65.3 62.1
LwF (ECCV’16) 40.5 40.2 10.7 11.8 31.2 28.1 65.9 65.4 30.3 32.3 71.3 65.8

PASS (CVPR’21) 40.0 40.1 9.9 11.6 30.7 27.3 65.8 64.2 29.7 31.9 70.9 64.4
AKA (CVPR’21) 52.5 45.6 15.1 13.3 30.9 27.1 76.2 69.9 37.3 34.6 72.9 64.4

with 500 exemplars in total
BoT-FT+ (CVPR’19) 61.5 52.4 21.5 17.5 36.7 32.3 81.0 74.4 47.7 41.3 76.2 69.6

iCaRL (CVPR’17) 58.0 52.2 21.6 18.3 38.0 33.3 78.7 74.5 47.5 42.2 78.1 70.9
LwF+ (ECCV’16) 60.7 54.0 20.8 17.5 38.3 33.3 80.3 75.4 46.6 40.8 77.9 70.1

Table 1: Results in mAP and Rank-1 Accuracy (in %) after last task and average over all
tasks. The top half reports results for meta metric learning, and the lower half for global
optimization methods using the softmax-triplet loss (BoT [41]). Results are further split into
methods with and without exemplars. The best exemplar-free results are highlighted in bold.

mAP Rank-1 Accuracy
market sysu msmt17 cuhk03 seen avg. unseen market sysu msmt17 cuhk03 seen avg. unseen

BoT-FT 11.6 54.6 0.8 31.2 24.6 32.4 31.6 61.6 2.8 35.1 32.8 32.8
LwF 21.0 58.0 1.7 48.0 32.2 43.3 46.5 64.7 5.8 53.8 42.7 42.9
AKA 18.7 56.3 1.6 48.6 31.3 43.6 42.3 63.1 5.8 53.9 41.3 43.6

DMML-FT 22.5 56.8 2.3 67.0 37.2 42.8 47.3 62.6 8.4 73.8 48.0 42.6
DwPP 23.2 56.7 2.2 67.9 37.5 44.7 49.1 63.2 7.5 72.4 48.0 44.2

Ours (DwoPP) 34.4 67.3 4.1 53.5 39.8 48.5 58.6 73.0 12.3 59.6 50.9 47.8

Table 2: Results after learning the last task. BoT [41] (above) and DMML [6] (below).

ual learning methods without exemplars, our method DwoPP performs best on all datasets.
Compared to the DMML-FT metrics after task 10, DwoPP improves by between 9.1 to
12.9 in mAP. Note that on Market-1501 and VeRi-776 DMML-FT outperforms most of the
methods that actively counter fogetting. Furthermore, we also include a comparison with re-
hearsal methods in Table 1. The methods iCaRL, LwF+, FT+ and ERD obtain similar results,
and improved performance compared to DMML-FT. Our exemplar-free method DwoPP per-
forms better than exemplar-based methods on these three datasets (only marginally worse in
average Rank-1 Accuracy on VeRi-776). We also ablate our distillation and report results
for distillation with all pairs (DwPP). The results of DwPP show that naive application of
knowledge distillation to continual meta metric learning does hardly improve results. The
removal of positive pairs (DwoPP) results in large performance gains after the last task: gains
between 7.5 to 9.4 in mAP.
Inter-Domain Lifelong Person ReID (LReID). In Table 2, we compare DwoPP with other
methods on the LReID [50] benchmark. Similar to the results for the intra-domain ReID
setting, the DMML-FT baseline outperforms BoT-FT by a large margin for both seen and
unseen tasks. Our method performs best, outperforming AKA by 8.5/9.6 (mAP/Rank-1 Ac-
curacy) on seen tasks and 4.9/4.2 (mAP/Rank-1 Accuracy) on unseen tasks. The difference
between DwPP and DwoPP on LReID further highlights the importance of removing positive
pairs from knowledge distillation. See the Supplementary Material for more analysis.
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Figure 4: Ablation study on hyperparameters λ and T .

DwoPP DKD [77] DwPP
α 0.0 0.1 0.3 0.5 1.0 1.0
β 1.0 0.9 0.7 0.5 0.0 1-ρ

mAP last 67.2 62.9 48.2 36.0 25.9 32.8
avg 57.6 53.7 46.8 39.1 32.1 37.8

Table 3: Decoupling Eq. 6 into PPKD and NPKD with coefficients α and β on Market-1501
with temperature T = 1.0. ρ is the positive probabilities as in DKD [77].

Influence of positive pairs on distillation. To better understand the role of positive pairs
(PP) and negative pairs (NP) in knowledge distillation, we decouple the knowledge distilla-
tion (following DKD [77]) from Eq. 6 into PPKD and NPKD by LDwPP* = α ∗PPKD+β ∗
NPKD,α +β = 1.0 (here we use T = 1.0). Note that LDwPP = PPKD+ρ ∗NPKD (see Sup-
plementary Material for further explanations). In Table 3, we observe that the performance
drastically decreases with higher participation of positive pairs.
Ablation on λ in DwoPP and temperature T in both DwoPP and DwPP. In Fig. 4(a) we
vary λ which controls the tradeoff between metric and distillation losses. Except for λ =
10.0 and λ = 0.1, DwoPP performance is stable to changing λ . We set λ = 1.0 for DwoPP in
all experiments. In Fig. 4(b), we vary the temperature hyperparameter T in DwoPP. A high
temperature smooths the distribution and decreases the influence of the dominant class. For
DwoPP T = 10.0 performs similarly to finetuning, and T = 0.1 causes the model to focus
only on the highest probability. Thus we set T = 1.0 for DwoPP. In Fig. 4(c) we vary the
temperature T in DwPP to determine if larger temperatures benefit it. However, even with
the best T = 10.0, DwPP performs similarly to DMML-FT and much worse than DwoPP.
Again showing that naive knowledge distillation does not improve results for continual meta
metric learning. We use T = 10 for DwPP in all experiments.

5 Conclusions
We demonstrate that meta learning approaches perform better than those based on global
metric loss optimization for Object ReID. We therefore proposed an approach based on Con-
tinual Meta Metric Learning. To overcome forgetting, we propose Distillation without Pos-
itive Pairs (DwoPP) as an approach that eliminates positive samples from distillation. This
distillation makes the metric learning model accumulate knowledge from the previous and
current tasks and generalize better to unseen tasks. Extensive experiments on newly proposed
intra-task object re-identification datasets and the existing LReID benchmark demonstrate
the effectiveness of our approach. Furthermore, experiments confirm that naive knowledge
distillation does not improve results for continual meta metric learning, and only after the
removal of positive pairs is forgetting of previous tasks effectively countered.
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