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1 Implementation details.
We follow the same network structure and training strategy as DMML [1] for methods based
on the DMML loss, and use the network and training protocol of BoT [10] for methods based
on the softmax-triplet. For our person ReID experiments, we use ResNet-50 [3] pretrained
on ImageNet [12] as our feature extractor. The last spatial downsampling operation in the
network is removed to maintain high resolution. We resize input images to 256×128 for all
methods. For vehicle ReID, we also use a ResNet-50 backbone pretrained on ImageNet as
the embedding architecture, and use input images of size 224×224 augmented with random
horizontal flips. We use the Adam optimizer [5] with a base learning rate of LR = 0.0002
and weight decay of 0.0001. All models are trained for 600 epochs with fixed learning rate
of 0.0002 for the first 300 epochs, after which the learning rate is reduced by a factor of
0.0051/300 each epoch until the end. We set the trade-off coefficient to λ = 1.0, the margin
as τ = 0.4 as in DMML [1], and the temperature to T = 1.0 for DwoPP and T = 10.0 for
DwPP. The number of classes, support images, and query images are in each episode are
N = 32,ns = 5,nq = 1, respectively.
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Continual learning metrics on Market 1501
BoT FT LwF AKA IDA DMML FT DwPP DwoPP

Plasticity 9.7 9.5 9.7 7.2 10.8 10.7 8.1
Forgetting -8.9 -7.7 -6.5 -5.9 -6.8 -6.5 -2.9

Overall 0.8 1.8 3.2 1.3 4.0 4.2 5.2
Table 4: Average forgetting and plasticity in mAP (%) on Market-1501 together with the
overall mAP change (defined as plasticity plus forgetting).

continual metric learning training tasks Unseen-test task
Task id: 1 2 ... 10

Identities per task:
Market-1501 76 75 ... 75 750
MSMT17_V2 105 104 ... 104 3060

VeRi-776 63 57 ... 57 200

Table 5: Our proposed 10-task split of two Person ReID datasets and one Vehicle ReID
dataset for Continual Metric Learning.

2 Evaluating forgetting.
To further analyze the results we measure forgetting and plasticity on the Market 1501
dataset. Continual learning aims to counter forgetting (stability) while optimally learning
new tasks (plasticity). To measure these, we track the change in mAP for each identity in
the unseen test set after each task: a drop is added to forgetting, an increase to plasticity. In
Table 4 we report the plasticity and forgetting averaged over tasks. We see that DwoPP has
greatly reduced forgetting at the price of only a small decrease in plasticity.

3 Continual Metric Learning splitting protocols
Our proposed Continual Metric Learning splits for two Person ReID datasets and one Vehicle
ReID dataset are shown in Table. 5. For all three datasets, we try to uniformly distribute the
training identities into 10 continual metric learning tasks. The query and gallery set are fixed
and serve as the unseen-test task.

4 DMML loss illustration
An illustration of the DMML loss [1] is shown in Fig. 5. The hard-mining DMML loss finds
the largest distance to a positive example and the smallest distance to a negative sample to
compute the metric loss with a margin.

5 More random orders on Market-1501 dataset.
In the main paper, we split tasks according to the object IDs. Thus, for the purpose of veri-
fying the robustness of our proposed method to various orderings of the tasks, we randomly
generate three different orderings of person IDs from Market-1501 to split the tasks (see
Fig. 6). The results show that the trends are similar as those reported in Table 1. Results are
averages and standard deviations in mAP and Rank-1 Accuracy over these three runs.
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Figure 5: Supposing the query point is from class 1, the hard-mining DMML loss selects the
farthest positive point and nearest negative point to compute the distance. It forces a margin
between negative and positive distances.

6 Lifelong Person ReID (LReID) benchmark

For the LReID benchmark[11] we removed the DukeMTMC-ReID dataset due to its re-
traction on account of privacy issues. Except for this change, we keep the same training
order as LReID Order-1: Market-1501 [16]→ CUHK-SYSU [14] → MSMT17_V2 [13] →
CUHK03 [8]. After training each task, we evaluate the model over the test query and gallery
sets in LReID-Seen for these four datasets, and also on the LReID-Unseen test set consisting
of seven person ReID datasets: VIPeR [2], PRID [4], GRID [9], i-LIDS [17], CUHK01 [7],
CUHK02 [6], and SenseReID [15]. All the performance curves on LReID-Seen are shown
in Fig. 8 and the curves on LReID-Unseen are shown in Fig. 7.

An interesting phenomenon we observed in the main paper is that DwPP is always better
in the current task evaluation. We assume this is because DwPP forces the predictions to
be aligned with the probability distributions of the old model, which contain some informa-
tion about the relative distances of these identities. This extra information further enhances
representation learning in the current task, thus leading to better performance on the current
task even compared to the finetuning baseline (which is usually better on the current task).
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(a) mAP on Market-1501 (b) Rank-1 on Market-1501
Figure 6: Performance on Market-1501 averaged over three random ID orders with standard
deviation.
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Figure 7: Results in mAP and Rank-1 Accuracy the LReID-Unseen test set of the LReID
benchmark. The training order is (Market-1501→ CUHK-SYSU → MSMT17_V2 →
CUHK03).

7 Limitations and ethical considerations
Person ReID is fraught with ethical concerns over its potential to violate the privacy of ob-
served subjects. Although continual learning for Person ReID offers the possibility of learn-
ing and updating models without the need for long-term retention of sensitive data, it also
runs the risk of “baking” biases into the model that, due to mitigation of forgetting, become
difficult to remove. For real applications there is still a large gap between joint and continual
training for object ReID, and a limitation of the experiments in this work is the relatively
short task sequences we consider.
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Figure 8: Results in mAP and Rank-1 Accuracy on the LReID benchmark. The training
order is (Market-1501→ CUHK-SYSU → MSMT17_V2 → CUHK03). The first four rows
show the evaluation on these four tasks respectively.
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