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Abstract

Whilst contrastive learning has recently brought notable benefits to deep clustering
of unlabelled images by learning sample-specific discriminative visual features, its po-
tential for explicitly inferring class decision boundaries is less well understood. This is
because its instance discrimination strategy is not class sensitive, hence, the clusters de-
rived on the resulting feature space are not optimised for corresponding to meaningful
class decision boundaries. In this work, we solve this problem by introducing Semantic
Contrastive Learning (SCL). SCL imposes explicitly distance-based cluster structures on
unlabelled training data by formulating a semantic (cluster-aware) contrastive learning
objective. Specifically, we encourage consensus between learning the optimal hypothe-
ses on the semantic class boundaries and feature similarities. This is formulated by a
clustering consistency condition to be satisfied jointly by instance feature similarities and
cluster decision boundaries. This semantic contrastive learning approach to discovering
unknown class decision boundaries has considerable advantages to unsupervised learning
of object recognition. Extensive experiments show that SCL outperforms state-of-the-art
contrastive learning and deep clustering methods on six object recognition benchmarks,
especially on the more challenging finer-grained and larger datasets.

1 Introduction
Given the massive increase of images available on the Internet, how to leverage them with-
out label annotation for learning high-level visual semantics remains a challenging problem
for unsupervised deep learning, although it has been shown to be highly effective in super-
vised deep learning given large-scale labelled training data. Clustering as a conventional
unsupervised machine learning technique [1, 21, 28] has been recently exploited for visual
representation learning in deep neural networks to perform Deep Clustering [15, 20].

Separately, contrastive learning [8, 14, 36] has also been shown effective for self-supervised
learning of generalisable feature representations by instance-discrimination (Fig. 1 (a)). It
may appear to have the potential to benefit unsupervised clustering due to its expressive
sample-specific visual representation. However, directly applying contrastive learning to
deep clustering is sub-optimal for class-discrimination. Because it lacks awareness of non-
linear intra-class variations. This is inherent from learning with per-sample pseudo classes
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Figure 1: Instance vs. semantic contrastive learning. (a) Instance contrastive learning differ-
entiates query samples from a contrastive set regardless their potential class memberships.
(b) SCL pulls samples away from only their pseudo negatives of other clusters.

generated by global linear data augmentations for instance-wise visual discrimination. We
observe that this limitation is overlooked by recent contrastive learning based clustering
methods. Such attempts avoid the problem by either limiting to restricted local feature space
neighbourhoods exhibiting subtle visual variations [16, 17], or suffering from class ambi-
guities due to the inherent contradiction between instance-level discrimination (pull away
intra-cluster) and class(cluster)-level grouping (push closer intra-cluster) [27, 35, 37].

In this work, we propose a deep clustering method called Semantic Contrastive Learning
(SCL). In this SCL model, cluster structures are explicitly imposed to unlabelled training
data to encourage learning a ‘cluster-aware’ instance discriminative feature space that pro-
motes separation of decision boundaries between clusters, leading to a plausible interpre-
tation of the underlying semantic concepts (Fig. 1 (b)). Specifically, the instance discrim-
ination in SCL aims to reduce visual redundancy (what’s common) across samples so that
images which are sharing more uncommon (what’s unique) appearance patterns are pushed
closer in feature space, whilst the cluster discrimination aims to optimise holistically the
cluster decision boundaries so that any visual overlap across clusters is minimised and each
cluster exhibits unique and consistent visual characteristics of each underlying class (se-
mantic concept). Different from the recent instance contrastive learning based clustering
methods [27, 35, 37] which pull away each instance from all other samples in the feature
space, SCL only pulls it away from its pseudo-negative samples in other clusters. By sharing
a common contrastive (negative) set for all the instances in a cluster, SCL indirectly pushes
them closer regardless of any intra-cluster visual dissimilarity. This resolves the contradic-
tion in the instance contrastive learning and clustering objectives but is neglected by those
recent attempts. Moreover, we introduce a new semantic memory to not only store repre-
sentations for instance discrimination but also embed the cluster structures. This enables
optimising cluster decision boundaries by maximising the consistency between cluster-level
(semantic) and instance-level (visual) distances.

Our contributions are: (1) We make the first attempt to solve the contradiction in learn-
ing simultaneously instance contrastive discrimination and clustering objectives in order to
optimise nontrivial class separations in a feature space without labelled training. (2) We
introduce a novel Semantic Contrastive Learning (SCL) for deep clustering. SCL discov-
ers cluster decision boundaries by enforcing a consensus between instance contrastive dis-
crimination and cluster compactness. (3) We formulate a new semantic memory to enable
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simultaneous optimisation of instance and cluster discrimination. SCL yields compelling
performance advantages over the state-of-the-art deep clustering methods, with significant
improvements (∼17%) on the more challenging larger and finer-grained datasets.

2 Related Work

We shall first differentiate clearly the different objectives between deep clustering in the
context of this work and unsupervised representation learning elsewhere. The latter aims to
learn generalisable feature representations – generative representational learning – without
any consideration for optimising class-discrimination. Our objective is generative decision
boundary learning optimised for class-discrimination without labels in model learning.

Deep clustering. In the absence of ground-truth class labels, one popular solution of
deep clustering is to mimic supervised learning by estimating pseudo labels iteratively from
learning improvement on feature representations [6, 7, 12, 38, 40, 41, 42]. Although these
methods may benefit from explicit supervised discriminative learning, it is also intrinsically
unstable due to error-propagation between unreliable label assignments and updates of ran-
domly initialised representation based on such assignments [16, 46]. SCL is more robust
to error propagation from the intermediate cluster assignments during model learning be-
cause the contrastive learning formulation is able to discover the intrinsic visual similarity
among samples despite a lack of knowledge of their true class memberships. In contrast
to the alternate strategy, one can learn simultaneously label assignment and feature updates
using certain pretext objectives that indirectly impose requirements for learning good cluster
structures [13, 18, 19, 20, 31, 33, 44]. However, due to the weak correlations between their
learning objectives and the target class boundary separations, they tend to yield clusters that
are less consistent with the semantic categories. SCL reduces visual redundancy across clus-
ters so that each cluster exhibits unique and consistent visual characteristics that are more
plausible for encoding an underlying semantic concept.

There are a few recent attempts [11, 27, 35, 37] on deep clustering by exploring directly
visual features from instance contrastive learning. However, they either suffer from class
ambiguities due to the inherent contradiction between instance-level discrimination (pull
away intra-cluster) and cluster-level grouping (push closer intra-cluster) [11, 27], or focused
only on a one-sided representation learning [35] or their partitioning [37] while neglect-
ing their mutual impacts. By assembling instance-wise contrastive samples into a common
pseudo-negative set for simultaneous instance discrimination and cluster decision boundary
optimisation, we resolve their contradiction and jointly amplify their strengths.

Unsupervised representation learning. Beyond the forementioned works designed for
modelling the inherent class structure of unlabelled images, there are other methods for learn-
ing generalisable image representations that may appear to be similar to clustering [2, 3, 4,
5, 26]. Those representation learning methods assume clustering is given, which rely on in-
dependent clustering [3, 4, 26] or optimal transport algorithms [2, 5] to compute the pseudo
labels. Therefore, they are both limited by potentially suboptimal clustering computed inde-
pendently, and only addressing restricted partial problem, an easier learning task. Our SCL
model solves the two underlying problems holistically as a single problem by focusing di-
rectly on modelling semantically-aware clustering therefore removing any suboptimal offline
clustering assumption and is end-to-end optimised for the resulting representation derived.

Contrastive learning [8, 9, 14, 32, 36, 39] optimises sample-specific visual features by
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treating every individual instance as an independent class augmented by guaranteed positive
samples generated using global linear transforms. By ignoring any cross-sample relation-
ships and global class memberships, the learned representations are ambiguous to both intra
and inter-class nonlinear image variations, therefore, less discriminative against true classes.
To address such a limitation, studies have been carried out to integrate it with neighbourhood
discovery [16, 17, 45]. These methods adopt directly the supervised contrastive learing [22]
paradigm to explicitly push pseudo-positive samples closer in the feature space. Such a
paradigm is prone to accumulating errors from unreliable pseudo label predictions. Extra
constraints and strategies such as restricting neighbourhood’s size and pre-learning repre-
sentations must be applied to avoid the negative impacts of error-propagation. Such strate-
gies cannot apply in general therefore are suboptimal. In contrast, our SCL model implicitly
poses positive relationships by pulling samples away from a common pseudo-negative con-
trastive set. SCL has no need for hand-crafted extra strategies which are time consuming and
non-scalable due to being independent from the deep clustering learning, not end-to-end.

(a) Initiation (b) Instance discrimination (c) Cluster discrimination (d) Results

Data points from different classes Initial and updated boundaries Far Close

Visual
similarity

Semantic
assignment

Target sample

Figure 2: An overview of SCL. (a) Given a randomly initialised feature space and decision
boundaries, (b) the SCL model optimises visual similarities among samples by instance dis-
crimination and (c) the potential class memberships by cluster discrimination (d) and finally
converge to a consensus between instance-level diversity and cluster-level compactness.

3 Clustering on Unlabelled Images
Given a set of unlabelled images I = {III1, III2, · · · , IIIN}, deep clustering aims to derive (1) a
feature embedding network θ that extracts key semantic information encoded in the high-
dimensional pixel space to a compact vector subspace fθ : III→ xxx ∈ Rd , and (2) a classifier
φ that projects the feature vectors into C partitions fφ : xxx→ y,y ∈ {1,2, · · ·C}, with a hope
that samples in the same cluster share the same ground-truth class label, otherwise not. It
is fundamentally challenging to derive class discriminative information directly from raw
images in an unsupervised manner, due to the complex appearance patterns and variations
exhibited both within and across classes.

In this work, we introduce a Semantic Contrastive Learning (SCL) method. SCL ex-
plores the idea of cluster-centred contrastive learning that differ from other recent develop-
ments on deep clustering by directly applying instance-centred contrastive learning. Given
the sample-specific learning constraint of the instance contrastive learning, it is non-trivial
to exploit it in unsupervised clustering that also jointly enforces necessary constraints to un-
known class decision boundary when there is no class label in training. To overcome this
hurdle, we optimises concurrently instance discrimination and their assignment to a set of
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clusters, with an additional consistency objective function to condition their optimisations
jointly. SCL aims to learn both optimal instance visual similarities that can verify each
instance’s cluster assignment globally and optimal cluster compactness that can maximise
inter-cluster discrimination margins. Importantly, the SCL formulation can be utilised by
any instance contrastive learning methods [8, 14, 39] for deep clustering tasks, and it is
end-to-end trainable therefore globally optimised. Fig. 2 shows an overview of SCL.

3.1 Semantic Contrastive Learning
We start with formulating a new cross-cluster instance discrimination learning objective with
a novel semantic memory. The aim is to learn visual features to be discriminative across
clusters and facilitate simultaneous instance and cluster discrimination.
Cross-cluster instance discrimination. Our feature learning objective is formulated to
differentiate every individual instance against its pseudo-negative samples so to reduce its
visual redundancy regarding images of other clusters (Fig. 2 (b)). Given random partitions at
the beginning of training (Fig. 2 (a)), by isolating samples from different clusters, the model
behaves as instance contrastive learning and outputs per sample-specific visual features. In-
tuitively, visually similar samples are expected to share more class-specific unique informa-
tion, their representations will therefore be gradually gathered closer and grouped into the
same clusters by our cluster discrimination detailed later. Along the clustering process with
increasingly better and stable cluster assignments, the contrastive set of every sample will ab-
sorb more visually dissimilar counterparts, instead of random ones. Consequently, the learn-
ing objective becomes reducing cross-cluster visual redundancy, resulting in desired features
that are aware of inter-cluster visual discrepancies and invariant within clusters (Fig. 2 (d)).

Whilst our SCL is a generic formulation, we take the momentum contrast (MoCo) [9, 14]
as an example of instantiation. We first formulate a mapping function fθ from a pixel space
to a representational space as an encoder with learnable weights θ . Similarly, we construct
another momentum encoder f

θ̃
with an identical structure but independent parameters θ̃ .

Given an unlabelled dataset I, we randomly apply a set of transformations T to each image
for distribution perturbation. We then represent two perturbed copies of each instance, T1(IIIi)
and T2(IIIi), by the two encoders respectively and denote them as qqqi = fθ (T1(IIIi)) and kkki =
f
θ̃
(T2(IIIi)). Given the pseudo labels of all the samples Y = {y1,y2, · · · ,yN}, yi ∈ [1,C] in-

ferred by the progressively updating decision boundaries, our instance discrimination objec-
tive in terms of IIIi is to match qqqi with kkki against its contrastive set Qi = {k̃kk1, k̃kk2, · · · , k̃kkK} s.t. yi 6=
y j,∀ j ∈ [1,K] composed by K stale representations of its pseudo-negative samples:

LID(IIIi) =− log
exp(cos(qqqi,kkki)/τ)

∑k̃kk∈Qi∪{kkki} exp(cos(qqqi, k̃kk)/τ)
, (1)

where cos(·, ·) is the cosine similarity between a pair of representations and τ is the temper-
ature to control the concentration degree of distribution. As the samples in the same clusters
share a common contrastive set, they are indirectly pushed closer in the feature space regard-
less of any intra-cluster variations. Therefore, the learned features are geared towards being
sensitive to cluster-wise visual characteristics, not sample-wise.
Semantic memory. To facilitate instance discrimination across clusters, we manage C
independent memory banksM= {M1,M2, · · ·MC} each corresponding to one cluster with a
size of K/(C−1). For an image IIIi with pseudo label yi, we construct its contrastive set Qi:

Qi = {k̃kk|k̃kk ∈M j ∀ j ∈ [1,C] and j 6= yi}. (2)
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There is always one memory bank left out for each sample and the rest Ms are concatenated
as its contrastive set Q approximately in size K (rounding error) to support cluster discrim-
inative feature representation learning. For memory update, after every backward pass, the
representation kkki enqueues to Myi with the oldest one inside removed.
Cluster discrimination. To discover the underlying concepts with unique visual char-
acteristics, we infer their decision boundaries by reducing the visual redundancy among
clusters, namely maximising the visual similarity of samples within the same clusters and
minimising that between clusters (Fig. 2 (c)). Concretely, as the representation of samples
with different pseudo labels are stored independently in the semantic memory bank, they can
be taken as anchors to describe their corresponding clusters. Given a training sample qqqi, its
probability p̃i, j of being in the j-the cluster predicted by a distance-based classifier is

p̃i, j =
∑k̃kk∈M j

exp(cos(qqqi, k̃kk)/τ)

∑
C
j′=1 ∑k̃kk∈M j′

exp(cos(qqqi, k̃kk)/τ)
. (3)

With such potential memberships determined by sample-anchor visual similarities, we for-
mulate a consistency loss for learning the cluster decision boundaries:

pppi = Softmax(W>qqqi +B) ∈RC, LCD =
1
n

n

∑
i=1

C

∑
j=1
−p̃i, j log pi, j, (4)

where {W ;B} is the learnable parameters of classifier fφ and n denotes the size of mini-batch.
In Eq. (4), we aim to minimise the cross-entropy of the distance-based cluster assignments p̃ppi
and the predictions pppi yielded by the cluster decision boundaries then propagate the gradient
back to pppi only to avoid feature learning from unreliable boundaries. By doing so, samples
are assigned to the cluster with the most similar anchors while each cluster holding its own
visual characteristics that make it different from others and correspond to an underlying
semantic class with consistent and unique visual characteristics.

With the updated models fθ and fφ , we renew the cluster assignments every epoch in a
maximum likelihood manner for semantic memory construction in Eq. (2):

yi = argmax
j

pi, j, j ∈ {1,2, · · · ,C}. (5)

As the predictions become increasingly more accurate in the process of training, this update
improves cross-cluster instance discrimination on learning class discriminative features.
Hard samples mining. To enhance discrimination capacity, we identify semantically
ambiguous samples and emphasise them in instance discrimination:

se
i = se−1

i +1[ye
i 6= ye−1

i ], we
i =

se
i

∑
n
j se

j
, LID =

n

∑
i=1

we
iLID(IIIi), (6)

where we
i is the weights of IIIi at the e-th training epoch. The samples that are frequently

swapped across clusters (i.e. hard samples) are assigned with higher weights for offering
more useful discriminative learning clues.

3.2 Model Training
Given the instance (Eq. (6)) and cluster (Eq. (4)) discrimination losses, the overall training
objective of SCL is:

L= αLID +βLCD. (7)
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In the absence of labelled validation data in unsupervised clustering, we set both the weights
to α =β =1 to avoid exhaustive per-dataset parameter tunning. To minimise L, the weights
of encoder θ as well as the decision boundaries φ are updated by back-propagation and the
momentum encoder θ̃ is by θ̃ ← mθ̃ +(1−m)θ where m is a momentum coefficient [14].
Both objective functions (Eq. (6) and Eq. (4)) are differentiable thus can be trained end-to-
end by the conventional stochastic gradient descent algorithm.

4 Experiments

Datasets. Evaluations were conducted on six challenging object recognition benchmarks.
(1) CIFAR-10(/100) [23]: Natural image datasets composed by 60,000 samples that are uni-
formly drawn from 10(/100) classes. The 20 super-classes on CIFAR-100 were considered as
ground-truth. (2) STL-10 [10]: An ImageNet adapted dataset consists of 1,300 images from
each of 10 classes. Additional 100,000 images from unknown classes were available but
deprecated in our experiments. (3) ImageNet-10/Dogs [34]: ImageNet subsets containing
samples from 10 randomly selected classes or 15 dog breeds. (4) Tiny-ImageNet [25]: An-
other ImageNet subset in larger-scale with 100,000 samples evenly distributed in 200 classes.
Training and testing are conducted on the same set of data following convention [19, 20].

Evaluation metrics. Three standard clustering metrics were used to measure the consis-
tency of cluster assignments and ground-truth class memberships: (1) Clustering accuracy
(ACC) maps one-to-one the learned clusters to the ground-truth classes by the Hungarian
algorithm [24] and measures the classification accuracy; (2) Normalised mutual information
(NMI) quantifies the labelling consistency by the normalised MI between the predicted and
ground-truth labels of all image samples; (3) Adjusted rand index (ARI) computes the ratio
of image sample pairs holding consistent pairwise relationships against the ground-truth. All
these metrics scale from 0 to 1 and higher is better.

Implementation details. We followed [19, 20] to use a variant of ResNet-34 as the back-
bone network and [9] for the other implementation choices. All our models and the cluster
assignments are randomly initialised. An SGD optimiser was adopted for model updates
with weight decay in 5e− 4. The coefficient for momentum encoder updating was 0.9 and
τ in Eq. (1) was 0.1. We stored 4096/(C−1) representations for each cluster in the seman-
tic memory (Eq. (2)) on all the datasets except for 8192/(C− 1) on Tiny-ImageNet due to
larger scale. The learning rate was set to 0.03 with the cosine schedule [29] for its adjust-
ment across 200 epochs while the batch size was 256. We adopted the “merge-and-split”
strategy [43] for updating pseudo labels (Eq. (5)) to avoid extremely imbalanced partitions
and to stabilise training. Besides the target ‘clustering’ tasks which partition the target data
into the ground-truth number of clusters to facilitate comparisons, we followed [19, 20] to
jointly train SCL with auxiliary ‘under-clustering’ and ‘over-clustering’ tasks so to explore
multi-grained visual similarity. The cluster number in ‘under-clustering’ was half of the
ground-truth while instance-wise learning was considered as extreme ‘over-clustering’. At
test time, we followed [27, 35] to compare by the best models using the assignments yielded
by the classifier for ‘clustering’ tasks while the other two were deprecated. All the hyper-
parameters were kept the same across different datasets, i.e. no exhaustive per dataset tuning.
On computational cost, the only extra parameters we introduced to MoCo [9] are in the linear
classifier fφ and it took around 30 seconds on CIFAR-10 to update pseudo labels per epoch.
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Dataset CIFAR-10 CIFAR-100 STL-10 ImageNet-10 ImageNet-Dogs Tiny-ImageNet
Metrics NMI ACC ARI NMI ACC ARI NMI ACC ARI NMI ACC ARI NMI ACC ARI NMI ACC ARI
K-means .087 .229 .049 .084 .130 .028 .125 .192 .061 .119 .241 .057 .055 .105 .020 .065 .025 .005
DEC∗ [40] .257 .301 .161 .136 .185 .050 .276 .359 .186 .282 .381 .203 .122 .195 .079 .115 .037 .007
DAC∗ [6] .396 .522 .306 .185 .238 .088 .366 .470 .257 .394 .527 .302 .219 .275 .111 .190 .066 .017
ADC∗ [13] - .325 - - .160 - - .530 - - - - - - - - - -
DDC∗ [7] .424 .524 .329 - - - .371 .489 .267 .433 .577 .345 - - - - - -
DCCM∗ [38] .496 .623 .408 .285 .327 .173 .376 .482 .262 .608 .710 .555 .321 .383 .182 .224 .108 .038
IIC [19] .513 .617 .411 - .257 - .431 .499 .295 - - - - - - - - -
PICA [20] .591 .696 .512 .310 .337 .171 .611 .713 .531 .802 .870 .761 .352 .352 .201 .277 .098 .040
DCCS∗ [44] .569 .656 .469 - - - .376 .482 .262 .608 .710 .555 - - - - - -
GAT∗ [31] .475 .610 .402 .215 .281 .116 .446 .583 .363 .594 .739 .552 .281 .322 .163 - - -

SCAN† [37] .712 .818 .665 .441 .422 .267 .654 .755 .590 - - - - - - - - -
IDFD† [35] .711 .815 .663 .426 .425 .264 .643 .756 .575 .898 .954 .901 .546 .591 .413 - - -
CC† [27] .705 .790 .637 .431 .429 .266 .764 .850 .726 .859 .893 .822 .445 .429 .274 .340 .140 .071
CRLC† [11] .679 .799 .634 .416 .425 .263 .729 .818 .682 .831 .854 .759 .461 .484 .297 - - -
GCC† [11] .764 .856 .728 .472 .472 .305 .684 .788 .631 .842 .901 .822 .490 .526 .362 .347 .138 .075
SCL†∗ .744 .813 .683 .477 .482 .314 .593 .638 .485 .877 .930 .861 .728 .763 .652 .337 .172 .080

Table 1: Comparisons to the state-of-the-art deep clustering approaches. Methods with (·)†

conducted deep clustering by contrastive learning and (·)∗ trained without the additional data
on STL-10. The 1st/2nd best results are highlighted in red/blue.

4.1 Comparisons to the State-of-the-Art

Deep Clustering. Table 1 compares the proposed SCL with a wide range of state-of-
the-art deep clustering models including both with- (from “SCAN” and below) and without-
(from “GAT”and above) contrastive learning in their formulation. We observe: (1) SCL has
broad advantages over all other methods including the few close competitors, e.g. by 17.2%
(ACC) improvement over IDFD on ImageNet-Dogs. SCL yielded the best results in 4 out of
the 6 benchmarks and at least top-2 in 5/6 benchmarks. On STL-10 where SCL seems less
competitive, the top models used almost 10 times more additional training images that are
sampled from the same distribution as the target data but are explicitly of different classes
independent from the target classes. Those additional data give significant benefits by learn-
ing from strong negative signals but then were explicitly excluded when training the target
classifier, making it an easier learning task. In our experiment, we avoided using such a
data engineering strategy because it is neither practical nor scalable to have such similar and
guaranteed negative data unless their class labels are available. On the other hand, SCL’s
performance advantages over those methods learned without the additional data engineering
(marked with ∗) remain notable, e.g. improving GAT by 5.5%. This is a more accurate re-
flection on models’ true performances which is also consistent to the other benchmarks. (2)
It is always more challenging to precisely model the truth class boundaries of either finer-
grained or larger datasets. In these cases, SCL surpassed IDFD and CC on ImageNet-Dogs
and Tiny-ImageNet by 17.2% and 3.2%, respectively. (3) The significant performance mar-
gins obtained by all contrastive learning based methods indicate compellingly the benefit of
contrastive constraints in unsupervised semantic concepts learning. Importantly, SCL’s supe-
riority demonstrate the significance of solving the contradiction between optimising instance
contrastive discrimination (pull apart) and intra-cluster compactness (push closer).

Representation learning. Beyond the methods intrinsically designed for clustering [11,
27, 35, 37], we also compared SCL with a clustering-based representation learning ap-
proach [3] and two general instance contrastive learning schemes: Instance-wise learning
(MoCo [9]) and local neighbourhood discrimination based learning (PAD [17]). The learned
feature representations from both models are applied with K-means for clustering. As shown
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Dataset CIFAR-10 CIFAR-100 STL-10

MoCo [9]? 0.528 0.360 0.561
PAD [17]† 0.626 0.288 0.465
DeepCluster [3]† 0.374 0.189 0.334
SCL 0.813 0.482 0.638

Table 2: Comparisons to representation
learning methods. Notation: (·)? indicates
results reproduced from scratch using the
authors’ code [9]; (·)† are from [17].

0.1
0.3
0.5
0.7
0.9

NMI ACC ARI NMI ACC ARI NMI ACC ARI

CIFAR-10 CIFAR-100 ImageNet-10

w/o both w/o cross-cluster ID w/o online CD w/ both (SCL)

Figure 3: Ablation studies on cross-cluster
instance descrimination (ID) and online
cluster discrimination (CD) designs.

in Table 2, our SCL method outperformed all the representation learning methods across the
board. This shows clearly the advantages of SCL from holistically modelling the inherent
class structure, resulting also a more optimal representation, as compared to separating rep-
resentation learning from class membership estimation.

4.2 Ablation Study

Detailed ablation studies were conducted for in-depth analysis of SCL. K-means was adopted
for models which did not yield desired number of clusters. Experimental results were aver-
aged over multiple trials.

Instance and cluster discrimination. We investigated the independent contributions of
our cross-cluster instance discrimination (ID) and online cluster discrimination (CD) de-
signs in the SCL model. For models trained without cross-cluster ID, all the memory banks
were concatenated as the contrastive set for every sample (Eq. (2)), whilst the cluster as-
signments p̃pp yielded by the semantic memory (Eq. (3)) was used for pseudo labels updating
if learned without online CD. Instance contrastive learning was considered as the baseline
without both the ID and CD components of SCL. As shown in Fig. 3, the models trained
without cross-cluster ID or online CD can always surpass instance contrastive learning with
remarkable margins, which demonstrates their effectiveness as individual components. By
jointly learning with both, SCL always produced superior performances which indicates the
mutual benefits of representation learning and decision boundaries reasoning.

0.2
0.4
0.6
0.8
1.0

NMI ACC ARI NMI ACC ARI NMI ACC ARI

CIFAR-10 CIFAR-100 ImageNet-10

w/o hard mining w/ hard mining

Figure 4: An ablation study on the hard sam-
ple mining strategy.

Initiated Under-clustering Clustering Over-clustering

Samples of 10 ground-truth classes (coloured coded)

Figure 5: Feature visualisation for images
on CIFAR-10 using t-SNE [30].

Hard sample mining. To emphasise the hard samples in model learning, we re-weighted
the samples within the same mini-batches according to their assignment stability (Eq. (6)).
To study the effectiveness of this design, we replaced it by averaging their losses as in con-
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ventional batch-wise training. According to Fig. 4, the learned clusters show higher con-
sistency with the ground-truth classes when training with the re-weighting strategy. This
demonstrates the importance of higtlighting hard samples with ambiguous semantic mean-
ings to improve the model’s class discrimination capability.

Feature visualisation. To better understand model effectiveness, we visualise some sam-
ple representations from a randomly initialised model and those learned from different clus-
tering tasks with different cluster numbers (under-, over- and clustering) on CIFAR-10. Fig. 5
shows that the initial states of the feature spaces were chaotic, which would certainly lead to
error-propagation if trained by estimated assignments in a conventional supervised learning
process. Whilst the ‘over-clustering’ task resulted in less within-cluster compactness than
‘clustering’ and ‘under-clustering’, ‘under-clustering’ yielded less separable clusters. By
jointly training on all three tasks, SCL explores visual similarity in multiple granularities
and learns clusters according to their consensus, hence, more robust to visual ambiguity.

(a) Confident cases (b) Unconfident cases

Figure 6: Examples from ImageNet-10. Per
class each row: (a) top-4 ‘confident’ and
(b) bottom-4 ‘unconfident’ cases w.r.t. assign-
ment probabilities. Samples in green boxes
are assigned to the correct classes while those
with red boxes are failed cases.

Visual case examples. Fig. 6 shows two
groups of image examples from ImageNet-
10, with the highest/lowest probabilities
(confident/unconfident) for being in a clus-
ter shown in each row. It is evident that the
assignment confidence yielded by SCL is
well-aligned with the correctness of model
predictions. This means that the most con-
fident label interpretations of the learned
clusters are also more likely in agreement
with the ground-truth categories, i.e. se-
mantic plausibility is consistent with the
model prediction confidence. Most of the
failed cases are due to images being sig-
nificantly dominated by background. This
suggests that it is challenging for unsuper-
vised learning to identify correctly the rele-
vant focus of attention in a visual context.

5 Conclusion

In this work, we proposed a novel Semantic Contrastive Learning (SCL) method for high-
level semantic understanding of visual data without learning from manual labels. The SCL
model addresses the fundamental limitation of instance contrastive learning by imposing
the cluster structure into the unlabelled training data so to jointly learn discriminative vi-
sual feature representations and reason about cluster decision boundaries while avoiding the
inherent contradiction between their learning objectives. By learning visual features with
high robustness to temporal (intermediate) cluster assignments in the course of model train-
ing, SCL mitigates the common error-propagation problem of contemporary deep clustering
techniques. Moreover, by exploring semantic relations from contrastive visual similarity, the
clusters yielded by SCL encode unique and consistent visual characteristics. Hence, SCL is
semantically more plausible. Experiments on six object recognition datasets show the SCL’s
superiority over the state-of-the-art deep clustering and instance contrastive models.



JIABO HUANG AND SHAOGANG GONG: SEMANTIC CONTRASTIVE LEARNING 11

Acknowledgements
This work was supported by the China Scholarship Council, Vision Semantics Limited, the
Alan Turing Institute Turing Fellowship.

References
[1] Radhakrishna Achanta and Sabine Susstrunk. Superpixels and polygons using simple

non-iterative clustering. In IEEE Conf. Comput. Vis. Pattern Recog., pages 4651–4660,
2017.

[2] Yuki Markus Asano, Christian Rupprecht, and Andrea Vedaldi. Self-labelling via si-
multaneous clustering and representation learning. In Int. Conf. Learn. Represent.,
2020.

[3] Mathilde Caron, Piotr Bojanowski, Armand Joulin, and Matthijs Douze. Deep clus-
tering for unsupervised learning of visual features. In Eur. Conf. Comput. Vis., pages
1–18, 2018.

[4] Mathilde Caron, Piotr Bojanowski, Julien Mairal, and Armand Joulin. Unsupervised
pre-training of image features on non-curated data. In Int. Conf. Comput. Vis., pages
2959–2968, 2019.

[5] Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal, Piotr Bojanowski, and Ar-
mand Joulin. Unsupervised learning of visual features by contrasting cluster assign-
ments. In Adv. Neural Inform. Process. Syst., volume 33, pages 9912–9924, 2020.

[6] Jianlong Chang, Lingfeng Wang, Gaofeng Meng, Shiming Xiang, and Chunhong Pan.
Deep adaptive image clustering. In Int. Conf. Comput. Vis., pages 5879–5887, 2017.

[7] Jianlong Chang, Yiwen Guo, Lingfeng Wang, Gaofeng Meng, Shiming Xiang, and
Chunhong Pan. Deep discriminative clustering analysis. In IEEE Conf. Comput. Vis.
Pattern Recog., pages 1–11, 2019.

[8] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A sim-
ple framework for contrastive learning of visual representations. arXiv preprint
arXiv:2002.05709, 2020.

[9] Xinlei Chen, Haoqi Fan, Ross Girshick, and Kaiming He. Improved baselines with
momentum contrastive learning. arXiv preprint arXiv:2003.04297, 2020.

[10] Adam Coates, Andrew Ng, and Honglak Lee. An analysis of single-layer networks in
unsupervised feature learning. pages 215–223, 2011.

[11] Kien Do, Truyen Tran, and Svetha Venkatesh. Clustering by maximizing mutual infor-
mation across views. In Int. Conf. Comput. Vis., pages 9928–9938, 2021.

[12] Xifeng Guo, Long Gao, Xinwang Liu, and Jianping Yin. Improved deep embedded
clustering with local structure preservation. In IJCAI, pages 1753–1759, 2017.



12 JIABO HUANG AND SHAOGANG GONG: SEMANTIC CONTRASTIVE LEARNING

[13] Philip Haeusser, Johannes Plapp, Vladimir Golkov, Elie Aljalbout, and Daniel Cremers.
Associative deep clustering: Training a classification network with no labels. pages
18–32. Springer, 2018.

[14] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum
contrast for unsupervised visual representation learning. In IEEE Conf. Comput. Vis.
Pattern Recog., pages 9729–9738, 2020.

[15] John R Hershey, Zhuo Chen, Jonathan Le Roux, and Shinji Watanabe. Deep cluster-
ing: Discriminative embeddings for segmentation and separation. In 2016 IEEE In-
ternational Conference on Acoustics, Speech and Signal Processing (ICASSP), pages
31–35. IEEE, 2016.

[16] Jiabo Huang, Qi Dong, Shaogang Gong, and Xiatian Zhu. Unsupervised deep learning
by neighbourhood discovery. 2019.

[17] Jiabo Huang, Qi Dong, Shaogang Gong, and Xiatian Zhu. Unsupervised deep learning
via affinity diffusion. In AAAI, 2020.

[18] Pan Ji, Tong Zhang, Hongdong Li, Mathieu Salzmann, and Ian Reid. Deep subspace
clustering networks. In Adv. Neural Inform. Process. Syst., pages 24–33, 2017.

[19] Xu Ji, João F Henriques, and Andrea Vedaldi. Invariant information distillation for
unsupervised image segmentation and clustering. In Int. Conf. Comput. Vis., pages
1–10, 2019.

[20] Shaogang Gong Jiabo Huang and Xiatian Zhu. Deep semantic clustering by partition
confidence maximisation. In IEEE Conf. Comput. Vis. Pattern Recog., 2020.

[21] Armand Joulin, Francis Bach, and Jean Ponce. Discriminative clustering for image
co-segmentation. In IEEE Conf. Comput. Vis. Pattern Recog., pages 1943–1950. IEEE,
2010.

[22] Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron Sarna, Yonglong Tian, Phillip
Isola, Aaron Maschinot, Ce Liu, and Dilip Krishnan. Supervised contrastive learning.
Adv. Neural Inform. Process. Syst., 33:18661–18673, 2020.

[23] Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny
images. Technical report, Citeseer, 2009.

[24] Harold W Kuhn. The hungarian method for the assignment problem. Naval research
logistics quarterly, 2(1-2):83–97, 1955.

[25] Ya Le and Xuan Yang. Tiny imagenet visual recognition challenge. CS 231N, 2015.

[26] Junnan Li, Pan Zhou, Caiming Xiong, and Steven C.H. Hoi. Prototypical contrastive
learning of unsupervised representations. In ICLR, 2021.

[27] Yunfan Li, Peng Hu, Zitao Liu, Dezhong Peng, Joey Tianyi Zhou, and Xi Peng. Con-
trastive clustering. In AAAI, 2021.

[28] Zichuan Liu, Guosheng Lin, Sheng Yang, Jiashi Feng, Weisi Lin, and Wang Ling Goh.
Learning markov clustering networks for scene text detection. In IEEE Conf. Comput.
Vis. Pattern Recog., pages 1–11. IEEE, 2018.



JIABO HUANG AND SHAOGANG GONG: SEMANTIC CONTRASTIVE LEARNING 13

[29] Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts.
arXiv preprint arXiv:1608.03983, 2016.

[30] Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of
machine learning research, 9(Nov):2579–2605, 2008.

[31] Chuang Niu, Jun Zhang, Ge Wang, and Jimin Liang. Gatcluster: Self-supervised
gaussian-attention network for image clustering. In Eur. Conf. Comput. Vis., 2020.

[32] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with con-
trastive predictive coding. In Adv. Neural Inform. Process. Syst., 2018.

[33] Xi Peng, Jiashi Feng, Jiwen Lu, Wei-Yun Yau, and Zhang Yi. Cascade subspace clus-
tering. In AAAI, 2017.

[34] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma,
Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet
large scale visual recognition challenge. Int. J. Comput. Vis., 115(3):211–252, 2015.

[35] Yaling Tao, Kentaro Takagi, and Kouta Nakata. Clustering-friendly representation
learning via instance discrimination and feature decorrelation. In Int. Conf. Learn.
Represent., 2021.

[36] Yonglong Tian, Dilip Krishnan, and Phillip Isola. Contrastive multiview coding. arXiv
preprint arXiv:1906.05849, 2019.

[37] Wouter Van Gansbeke, Simon Vandenhende, Stamatios Georgoulis, Marc Proesmans,
and Luc Van Gool. Scan: Learning to classify images without labels. In Eur. Conf.
Comput. Vis., pages 268–285. Springer, 2020.

[38] Jianlong Wu, Keyu Long, Fei Wang, Chen Qian, Cheng Li, Zhouchen Lin, and Hong-
bin Zha. Deep comprehensive correlation mining for image clustering. In Int. Conf.
Comput. Vis., pages 1–12, 2019.

[39] Zhirong Wu, Yuanjun Xiong, X Yu Stella, and Dahua Lin. Unsupervised feature learn-
ing via non-parametric instance discrimination. In IEEE Conf. Comput. Vis. Pattern
Recog., 2018.

[40] Junyuan Xie, Ross Girshick, and Ali Farhadi. Unsupervised deep embedding for clus-
tering analysis. pages 478–487, 2016.

[41] Bo Yang, Xiao Fu, Nicholas D Sidiropoulos, and Mingyi Hong. Towards k-means-
friendly spaces: Simultaneous deep learning and clustering. pages 3861–3870. JMLR.
org, 2017.

[42] Jianwei Yang, Devi Parikh, and Dhruv Batra. Joint unsupervised learning of deep
representations and image clusters. In IEEE Conf. Comput. Vis. Pattern Recog., pages
5147–5156, 2016.

[43] Xiaohang Zhan, Jiahao Xie, Ziwei Liu, Yew-Soon Ong, and Chen Change Loy. Online
deep clustering for unsupervised representation learning. In IEEE Conf. Comput. Vis.
Pattern Recog., pages 6688–6697, 2020.



14 JIABO HUANG AND SHAOGANG GONG: SEMANTIC CONTRASTIVE LEARNING

[44] Junjie Zhao, Donghuan Lu, Kai Ma, Yu Zhang, and Yefeng Zheng. Deep image clus-
tering with category-style representation. In Eur. Conf. Comput. Vis., 2020.

[45] Chengxu Zhuang, Alex Lin Zhai, and Daniel Yamins. Local aggregation for unsuper-
vised learning of visual embeddings. In Int. Conf. Comput. Vis., pages 6002–6012,
2019.

[46] Yang Zou, Zhiding Yu, Xiaofeng Liu, BVK Kumar, and Jinsong Wang. Confidence
regularized self-training. In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pages 5982–5991, 2019.


