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One-to-one mappings
Semantic clusters:
Can be described by human-
understandable words or
phrases, e.g. class labels
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Instance discrimination Cluster discriminationSample Cluster

(a) Insensitive to potential class memberships
(b) Restricted to subtle intra-class variations
(c) Instance contrast v.s. clustering - contradictory

(a) Initiation (b) Instance discrimination (c) Cluster discrimination (d) Results
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(b) Pulling each instance away from only its
pseudo-negative samples of other clusters

(c) Simultaneously learning decision boundaries
according to the distance-based cluster structure

Ø Semantic Memoryℳ = {'(,'*,… ,',}

Maintaining . independent memory banks with each
corresponding to a target cluster
Ø Per-instance contrastive set /0
For sample 10 with a pseudo label 20, its contrastive set
/0 is composed of its pseudo negative samples

/0 = {34|34 ∈ '7 ∀ 9 ∈ 1, . and 9 ≠ 20}

Ø Instance discrimination objective
To identify samples’ feature ?0 and their perturbed
copies 40 from their contrastive set

ℒID 10 = −log(
exp(cos(?0, 40)/τ)

∑34∈QR∪ 4R
exp(cos(?0, 34)/τ)

)

Ø Distance-based cluster structure
Taking samples in each semantic memory bank '0 as
the anchors of the corresponding cluster

TU0,7 =
∑34∈VW

exp(cos(?0, 34)/τ)

∑
7XY(
, ∑34∈VZX

exp(cos(?0, 34)/τ)

Ø Decision boundaries
Modelling decision boundaries by an FC layer

[0 = Softmax(Wa?0 + c) ∈ ℛ
,

Ø Cluster discrimination objective
Updating boundaries to yield consistent [0 with e[0

ℒCD(10) =g
7Y(

,

− TU0,7log U0,7

Ø Deep clustering
CIFAR100 IN-Dogs* Tiny-IN*

DCCM 0.327 0.383 0.108
PICA 0.337 0.352 0.098
GAT 0.281 0.322 -
CC† 0.429 0.429 0.140
GRLC† 0.425 0.484 -
GCC† 0.472 0.526 0.138
SCL† 0.482 0.763 0.172

IN*: ImageNet; Method†: w/ contrastive learning

Ø Representation Learning
CIFAR10 CIFAR100 STL10

MoCo 0.528 0.360 0.561
PAD 0.626 0.288 0.465
DeepCluster 0.374 0.189 0.334
SCL 0.813 0.482 0.638
Ø Feature visualisation

Initiated Under-clustering Clustering Over-clustering

Samples of 10 ground-truth classes (coloured coded)

Ø Visual case examples

(a) Confident cases (b) Unconfident cases(a) Confident cases (b) Unconfident casesConfident Unconfident
Confidence Correctness


