

# **Deep Clustering by Semantic Contrastive Learning**

Jiabo Huang Shaogang Gong jiabo.huang@qmul.ac.uk s.gong@qmul.ac.uk Queen Mary University of London, London, E1 4NS, UK



### **Related works & Limitations 1** Deep clustering of Unlabelled Images Representations Unlabelled Clusters Jφ Semantic clusters: (a) Sample-specific (b) Neighbourhood (c) Joint Clustering One-to-one mappings Can be described by human-(a) Insensitive to potential class memberships

(b) Restricted to subtle intra-class variations (c) Instance contrast v.s. clustering - contradictory

understandable words or phrases, e.g. class labels

Elephant Python Fish



**Cross-cluster instance discrimination** 

## **5** Online cluster discrimination

 $\succ$  Semantic Memory  $\mathcal{M} = \{M_1, M_2, \dots, M_C\}$ Maintaining C independent memory banks with each corresponding to a target cluster

### $\triangleright$ Per-instance contrastive set $Q_i$

For sample  $I_i$  with a pseudo label  $y_i$ , its contrastive set  $Q_i$  is composed of its pseudo negative samples  $Q_i = \{ \widetilde{k} | \widetilde{k} \in M_i \forall j \in [1, C] \text{ and } j \neq y_i \}$ 

### > Instance discrimination objective

To identify samples' feature  $q_i$  and their perturbed copies  $k_i$  from their contrastive set

$$\mathcal{L}_{\text{ID}}(\boldsymbol{I}_i) = -\log(\frac{\exp(\cos(\boldsymbol{q}_i, \boldsymbol{k}_i)/\tau)}{\sum_{\boldsymbol{\tilde{k}} \in Q_i \cup \{\boldsymbol{k}_i\}} \exp(\cos(\boldsymbol{q}_i, \boldsymbol{\tilde{k}})/\tau)})$$

### > Distance-based cluster structure

Taking samples in each semantic memory bank  $M_i$  as the anchors of the corresponding cluster

 $\tilde{p}_{i,j} = \frac{\sum_{\widetilde{k} \in M_j} \exp(\cos(q_i, \widetilde{k}) / \tau)}{\sum_{j'=1}^C \sum_{\widetilde{k} \in M_{j'}} \exp(\cos(q_i, \widetilde{k}) / \tau)}$ > Decision boundaries Modelling decision boundaries by an FC layer  $\boldsymbol{p}_i = \operatorname{Softmax}(W^{\mathsf{T}}\boldsymbol{q}_i + B) \in \mathcal{R}^C$ > Cluster discrimination objective

Updating boundaries to yield consistent  $p_i$  with  $\tilde{p}_i$  $\mathcal{L}_{\text{CD}}(\boldsymbol{I}_i) = \sum_{i=1}^{L} -\tilde{p}_{i,j} \log p_{i,j}$ 

