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Abstract
When trained at a sufficient scale, self-supervised learning has exhibited a notable

ability to solve a wide range of visual or language understanding tasks. In this paper,
we investigate simple, yet effective approaches for adapting the pre-trained foundation
models to the downstream task of interest, namely, open-vocabulary semantic segmenta-
tion. To this end, we make the following contributions: (i) we introduce Fusioner, with a
lightweight, transformer-based fusion module, that pairs the frozen visual representation
with language concept through a handful of image segmentation data. As a consequence,
the model gains the capability of zero-shot transfer to segment novel categories; (ii)
without loss of generality, we experiment on a broad range of self-supervised models
that have been pre-trained with different schemes, e.g. visual-only models (MoCo v3,
DINO), language-only models (BERT), visual-language model (CLIP), and show that,
the proposed fusion approach is effective to any pair of visual and language models,
even those pre-trained on a corpus of uni-modal data; (iii) we conduct thorough ablation
studies to analyze the critical components in our proposed Fusioner, while evaluating on
standard benchmarks, e.g. PASCAL-5i and COCO-20i, it surpasses existing state-of-the-
art models by a large margin, despite only being trained on frozen visual and language
features; (iv) to measure the model’s robustness on learning visual-language correspon-
dence, we further evaluate on a synthetic dataset, named Mosaic-4, where images are
constructed by mosaicking the samples from FSS-1000. Fusioner demonstrates superior
performance over previous models.

1 Introduction
In the recent literature, self-supervised representation learning has made remarkable progress.
For example, MoCo [12] and DINO [8] have shown the possibility of learning strong vi-
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sual representation without using any manual annotation. Noticeably, despite being trained
purely by self-supervised learning on images, these image models have shown to implicitly
capture the concept of objectness, i.e. free semantic segmentation to some extent [34, 44, 48].
Another line of work proposes to learn joint representation for image and text on very large-
scale image-text pairs collected from Internet. For example, by training with simple noise
contrastive learning, CLIP [38] and ALIGN [24] have demonstrated impressive “zero-shot”
transferability and generalizability in various image classification tasks. With the growing
computation, it is thus foreseeable that more powerful models will be trained, with even
larger scale datasets, further pushing the performance on image classification.

In contrast, semantic segmentation considers a more challenging task, that aims to as-
sign one semantic category to each pixel in an image. By training deep neural networks
on large-scale segmentation datasets, recent models have shown great success, for example,
FCN [43], U-Net [42], DeepLab [9], DPT [40]. However, the conventional strategy that
trains parametric classifiers for individual category, has posed fundamental limitations, as
it only allows the model to make predictions on a close-set of predetermined categories at
inference time, i.e., the model can only segment objects of the training set classes, and lacks
the ability to handle samples from novel (unseen) classes.

In this paper, we explore efficient ways to bridge the powerful pre-trained vision-only,
language-only or visual-language models, which, as a result, effectively tackles the problem
of open-vocabulary semantic segmentation, i.e., segmenting objects from any categories
by their textual names or description. In specific, we first encode the input image and cate-
gory names with frozen, self-supervised visual and language models. The computed features
are then concatenated and passed to a transformer-based fusion module, that enables the
features to be iteratively updated, in condition of the other modality through self-attention.
As to obtain the segmentation mask, we further measure the cosine similarity between each
pixel and the textual features of each category, i.e., computing dot product between the L2-
normalised visual and language embeddings.

To summarize, we make the following contributions: First, to tackle the problem of
open-vocabulary semantic segmentation, we introduce Fusioner with a simple, lightweight
transformer-based fusion module, which enables to explicitly bridge powerful, pre-trained
visual, language, or visual-language models; Second, we demonstrate the idea’s effective-
ness by experimenting on a wide spectrum of self-supervised models, that are pre-trained
with completely different schemes, for example, MoCo v3, DINO, CLIP, BERT, and show
that the proposed fusion approach is effective to any pair of visual and language models,
even those pre-trained on a corpus of uni-modal data; Third, we conduct thorough ablation
studies to validate the critical components. Despite all visual and language models are kept
frozen, the proposed simple fusion module is able to outperform the existing state-of-the-art
approaches in “zero-shot” settings significantly, and is competitive across numerous few-shot
benchmarks, e.g., PASCAL, COCO, FSS-1000; Fourth, to measure the model’s robustness
for learning visual-language correspondence, we introduce a new dataset, named Mosaic-4,
that can be used in open-vocabulary semantic segmentation to detect whether the models
tend to segment saliency that ignore the textual input. Fusioner shows superior performance
over previous models.

2 Related Work
Pre-trained Vision and Language Models. Self-supervised representation learning has re-
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cently made substantial progress in both computer vision and natural language processing.
In specific, some pre-training methods adopt contrastive learning (SimCLR [10], MoCo [12],
SwAV [7]), metric-learning (BYOL [18], SimSiam [11]) and self-distillation (DINO [8]) can
all be seen as powerful feature extractors on downstream tasks. On the other hand, language
model pre-training may use a masked language modeling loss (BERT [25], T5 [39]) or next-
token prediction loss (GPT [5, 36, 37]). Not surprisingly, large-scale visual-language models
have also attracted growing attention [13, 26, 28, 30, 32, 45], a milestone work is Contrastive
Language-Image Pre-training (CLIP) [38], that trains on the large-scale image-text pairs with
simple noise contrastive learning, and has shown strong capability of aligning two modal-
ities in embedding spaces. Inspired by this work, a series of studies have been proposed
to transfer the knowledge of the pre-trained CLIP and extend to various downstream tasks.
For example, object detection [17, 19], image captioning [23], referring image segmentation
[49], text-driven image manipulation [35], and supervised dense prediction [41], etc. Unlike
these works that fine-tune CLIP for different downstream tasks, we explore an alternative ap-
proach, and show that, simply pairing any frozen self-supervised visual and language models
with lightweight fusion module, can be a surprisingly strong baseline for open-vocabulary
semantic segmentation.

Bridging Pre-trained Models. With the rapid development of foundation models [3, 14,
53], many works have studied effective ways to adapt different downstream tasks by com-
posing different pre-trained models. Frozen [47] proposed to align the pre-trained, frozen
language model with vision encoder by learning continuous prompts with only a few ex-
amples. Flamingo [1] proposed an architecture that uses large pre-trained vision-only and
language-only models to learn a wide range of visual-language task with only limited sam-
ples. Socratic Models [54], which uses pre-trained language models, vision-language mod-
els, and audio-language models to complete downstream multi-modal tasks, such as image
captioning and video-to-text retrieval, without the need of training.

Semantic Segmentation of Novel Categories. To enable a network for segmenting novel
categories is still an open and active research question, as most of the existing semantic seg-
mentation methods are limited to a closed set, i.e., the category of test set is the same as the
training set. Zero-shot semantic segmentation often take advantage of category-level seman-
tic word embedding to segment novel categories without additional samples. For example,
ZS3Net [6], CSRL [29], CaGNet [20], and CaGNet-v2 [21] are generative methods com-
bining a deep visual segmentation model with an approach to synthesize visual features for
novel categories based on semantic word embeddings. SPNet [51], JoEm [2], LSeg [27] are
discriminative methods mapping each pixel and semantic word to a joint embedding space,
and leveraging the joint embedding space to give the class probability. Our approach falls
into the latter line, however, we advocate a lightweight fusion module that only aligns the
pre-trained, frozen visual and language features.

3 Methods
In this section, we start by formulating the the problem of open-vocabulary semantic seg-
mentation, and then detail our proposed architecture, termed as Fusioner, that addresses the
task by bridging the pre-trained vision and language models.

Problem Formulation. Following the same setting as defined in LSeg [27], we are given
a training set Dtrain = {(X ,Y,C)|X ∈ RH×W×3,Y ∈ RH×W×|C|,C ⊆ S}, where X denotes
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Figure 1. Overview of our proposed Fusioner, which consists of a frozen visual and text encoder, a
cross-modality fusion module and a visual decoder. The frozen encoders extract features for differ-
ent modalities, and the fusion module bridges these embedding spaces. After upsampling the visual
feature to its original resolution by the visual decoder, segmentation can be acquired by simple com-
puting the similarity between the visual and language modalities.

any input image; Y refers to the segmentation masks for X with one-hot encoding; C refers
to a set of seen categories in X ; S is all training (seen) categories in this training set. Our
goal here is to train a segmentation model that can partition a test image into semantically
meaningful regions of unseen categories:

Y j = ΦFUSIONER (X j,W j) = ΦDEC(ΦFUSE(ΦVISUAL-ENC(X j),ΦTEXT-ENC(W j))), (1)

where W j = {w1
j , . . . ,w

|W j |
j } is the categories of interests in one image X j (|W j| textual

words, e.g., “cat”, “plant”), and is dynamic for different images. The corresponding |W j|
output binary segmentation maps denote as Y j ∈ RH×W×|W j |. Note that, for the conven-
tional close-set segmentation, W j ⊆S, while for the open-vocabulary problem, W j

⋂
S = /0,

i.e., we evaluate the performance on the novel (unseen) categories that do not appear in the
training categories S.

3.1 Architecture
The overall framework of our proposed Fusioner is illustrated in Figure 1. It consists of
three components: visual and language encoders for extracting features (Section 3.1.1); a
cross-modality fusion module to bridge the embedding spaces (Section 3.1.2); and an image
decoder that upsamples the visual features to facilitate segmentation on original resolution as
input images, and segmentation can be acquired by simple computing the cosine similarity
between the visual and language (Section 3.1.3).

3.1.1 Visual and Language Representation

Here, we adopt pre-trained vision and language models as our encoders, and keep them
frozen during training. In specific, we mostly consider the transformer-based architectures,
due to their good performance, and flexibility for encoding signals of different modalities.

Visual Feature Embeddings. As the input to a vision transformer [15], the image X ∈
RH×W×3 is first split into a set of 2D non-overlapping patches, and projected into a sequence
of vector embeddings. After adding positional embeddings (inherited from the pre-trained
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vision transformer), these tokens are further processed by a series of transformer encoder
layers, each layer consists of multi-head self-attention (MHSA) and feed-forward network
(FFN) together with layer normalization and residual connections:

FV = ΦVISUAL-ENC(X ) ∈ R(hw)×di , (2)

where h = H/p and w = W/p, p is the patch size, and di is the visual embedding dimen-
sion. In later experiments, we adopt various popular transformer-based image encoders, that
were pre-trained with different self-supervised learning regime, for example, MoCo v3 [12],
DINO [8], and CLIP [38].

Textual Feature Embeddings. The text embeddings are generated by encoding the se-
mantic categories W through a text encoder:

FW = ΦTEXT-ENC(W) ∈ R|W|×dw , (3)

where |W| refers to the input number of categories, and dw is the dimension of word em-
beddings. Prior to feeding the semantic category into text encoder, we use multiple prompt
templates as decorations, e.g., “a photo of {category} in the scene”, and average the output
embeddings from text encoder. The complete prompt templates are listed in supplementary.
We consider various self-supervised language models that were trained on a large corpus of
documents or images as the text encoder, for example, BERT [25], or CLIP [38].

3.1.2 Cross-modality Fusion

Given the visual features FV and textual features FW, we firstly unify the channel dimensions
for both visual and textual embeddings by using MLPs, i.e. FV ∈R(hw)×d , FW ∈R|W|×d , and
pass the resulting features through a cross-modality fusion module to adaptively capture the
interactions between visual and language signals:

[F ′
V, F ′

W] = ΦFUSE([FV, FW]), (4)

where [·, ·] indicates feature concatenation of the visual and textual sequence. ΦFUSE is con-
sisted of multiple transformer encoder layers, effectively capturing the long-range depen-
dencies between the images and associated texts. The multi-modality visual feature F ′

V and
textual feature F ′

W have the same shape as FV and FW, and both features are enriched and
refined by iteratively attending the other modality.

3.1.3 Visual Decoder

Modality-maintained Upsampling. Here, the visual features are progressively upsampled
to the same resolution as the original image, in detail, we first reshape the sequence of visual
vectors into a spatial feature map, and upsample it by alternating convolutional and upsam-
pling layers, obtaining high resolution feature maps, i.e., F ′

V ∈ RH×W×d .

Calculating Segmentation Mask. The logits ŷ is generated by computing the cosine simi-
larity between the upsampled feature map and textual feature, i.e., ŷ=F ′

V ·F ′T
W ∈RH×W×|W|,

where F ′
V ∈RH×W×d , F ′

W ∈R|W|×d , denoting the L2-normalised visual and textual features,
and |W| is the number of categories (textual words). Seen as binary segmentation for each
category, the final predictions can be obtained by simply applying sigmoid with a tempera-
ture τ and threshold classwise.
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3.1.4 Discussion

The closest work to ours is LSeg [27], which also considers to tackle the problem of open-
vocabulary semantic segmentation, by explicitly pairing high-capacity image and text en-
coder, however, there remains three critical differences, in LSeg, (i) the visual model (dense
prediction transformers [40]) is pre-trained with supervised learning, while we use self-
supervised models that can be easily scaled up; (ii) the visual model is optimised end-to-end
for segmentation on certain categories, which may potentially lead to the catastrophic for-
getting; (iii) the visual and language representation are computed independently with dual
encoders, and only fused at the last layer for computing semantic segmentation, thus refer-
ring to as a late fusion. Such late fusion can potentially suffer from lexical ambiguities, for
example, same word (synonym) may refer completely different visual patterns, while early
fusion (ours) allows to update the features in condition to the other, potentially enabling to
learn better visual-language correspondence. In Section 4, we have conducted experiments
to validate the superiority of early fusion.

4 Experiment

4.1 Experimental Setups
Datasets. In accordance to prior work on open-vocabulary semantic segmentation [27], we
also evaluate our model on two benchmarks: PASCAL-5i and COCO-20i. PASCAL-5i is the
extension of PASCAL VOC 2012 [16] with extra annotations from SDS [22], consisting of
20 semantic categories that are divided evenly into 4 folds containing 5 classes each, i.e.,
{5i}3

i=0. COCO-20i is built from MS COCO [31] and contains 80 semantic categories that
are also divided into 4 folds, i.e., {20i}3

i=0, with each fold having 20 categories. For each
dataset, we conduct 4-fold cross-validation with same hyperparameter setup.

In addition, for robustness test, we introduce a new dataset with images constructed by
mosaicking images from FSS-1000 [50], termed as Mosaic-4. FSS-1000 contains pixel-wise
annotation of 1000 classes with 10 object-centric images each, in which 240 classes (2400
images) are reserved for test. Mosaic-4 reorganizes the test split of FSS-1000 by randomly
sampling 4 images of different categories without replacement, and mosaicking them into
one, creating a test list of 600 compound images with explicit distractors. An example can
be seen in Figure 2 (a) and (b), where each color represents an individual category.

Implementation Details. We experiment with three different pre-trained vision/language
models: the vision-only model (MoCo v3, DINO), the language-only model (BERT), and
the vision-language model (CLIP). Note that, all of them were kept frozen during training.
The cross-modality fusion module contains 12 layers with 8 heads, and the visual decoder
consists of k layers of convolution followed by a 2× upsampling, where k = 4 for ViT back-
bone and k = 5 for ResNet. We adopt AdamW optimizer, and the learning rate is ramped
up during the first 10 epochs to 0.001 linearly. After this warmup, we decay the learning
rate with a cosine schedule. The temperature factor τ = 0.07, and cross entropy is used for
training.

Evaluation Metrics. We adopt class mean intersection-over-union (mIoU) as our main
evaluation metric, The mIoU averages IoU over all classes in a fold: mIoU = 1

C ∑
C
c=1 IoUc,

where C is the number of classes in the target fold, and IoUc is the intersection over union of
class c. We also consider FB-IoU in some experiments, however, FB-IoU only cares about
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the performance on target and non-target regions instead of differentiating categories, where
only the foreground and background are considered as two categories (C = 2).

4.2 Ability to Bridge Different Pre-trained Backbones

Model Visual
Encoder

Text
Encoder

Early Fusion Late Fusion

50 51 52 53 mIoU 50 51 52 53 mIoU

A CLIP-B
CLIP-B 50.2 62.4 51.5 44.4 52.1 46.3 55.2 36.4 36.7 43.6
BERT-B 46.6 61.3 44.6 43.7 49.1 47.5 58.5 38.5 39.1 45.9
BERT-L 48.5 59.3 47.5 43.8 49.7 47.0 56.6 41.4 38.8 46.0

B CLIP-L
CLIP-L 61.9 70.0 51.2 52.7 59.0 52.6 58.4 45.9 43.7 50.1
BERT-B 56.9 66.0 45.9 49.6 54.6 56.5 60.2 44.6 47.0 52.1
BERT-L 56.0 64.4 43.7 52.0 54.0 55.3 60.5 46.3 46.3 52.1

C DINO-B
CLIP-B 56.4 67.1 49.8 47.5 55.2 57.1 64.6 48.5 46.2 54.1
BERT-B 56.7 65.1 48.5 45.2 53.9 54.2 61.4 48.7 48.8 53.3
BERT-L 56.1 65.8 48.7 44.2 53.7 57.4 65.1 48.5 46.3 54.3

D MoCo-B
CLIP-B 58.9 67.0 47.7 51.7 56.3 56.4 64.9 47.1 49.5 54.5
BERT-B 59.7 65.3 47.3 53.4 56.4 57.4 66.1 46.6 51.2 55.3
BERT-L 59.1 65.7 49.5 53.1 56.8 54.9 65.0 49.8 50.6 55.0

Table 1. Ability of bridging different pre-trained backbones on PASCAL-5i. CLIP-B (or -L) means
CLIP image/text encoders using ViT-B (or -L); BERT-B (or -L) means BERT-Base (or -Large);
DINO-B or MoCo-B means using ViT-B backbone, respectively.

As illustrated in Table 1, early fusion refers to our proposed fusion approach, while
late fusion denotes similar the idea as LSeg [27], where the visual or language features are
separately processed with 6 MLPs layers, and only fused at the last segmentation layer.

Here, we can make three observations: (i) pairing the frozen visual and language models
can be surprisingly powerful, even for models that are pre-trained on a corpus of uni-modal
data, for example, in model-D, with MoCo-B as visual encoder, and BERT-L as language en-
coder; (ii) early fusion consistently outperforms the late fusion, that validates the conjecture
that visual-language correspondence can be better captured by allowing the feature of one
modality to be updated in condition to the other; (iii) the segmentation performance tends
to improve with the model scale, for example, the model-B-CLIP works significantly better
than model-A-CLIP, despite both are pre-trained with image-text pairs. For latter experi-
ments, we adopt the pair in model-B with both encoders CLIP-L for the best performance.

4.3 Comparison with State-of-the-art
Following LSeg [27], we also compare our method with various open vocabulary segmenta-
tion methods: ZS3Net [6], SPNet [51] and LSeg [27] on PASCAL-5i and COCO-20i.

As shown in Table 2, our proposed Fusioner with pre-trained frozen visual-language
models (CLIP-L) achieves state-of-the-art results on both PASCAL-5i and COCO-20i, out-
performing LSeg [27] by a significant margin on mIoU. In contrast to PASCAL-5i, COCO-
20i is larger in scale and richer in objects, for example, there may exist over 5 categories
in one image, making it much more challenging. For late fusion models such as LSeg, the
visual feature will be dominated by the most salient objects, however, our cross-modality fu-
sion module can interchange information between visual and language features, adapt each
other iteratively. This may explain the performance gap between us and LSeg.

Citation
Citation
{Li, Weinberger, Belongie, Koltun, and Ranftl} 2022

Citation
Citation
{Li, Weinberger, Belongie, Koltun, and Ranftl} 2022

Citation
Citation
{Bucher, Vu, Cord, and P{é}rez} 2019

Citation
Citation
{Xian, Choudhury, He, Schiele, and Akata} 2019

Citation
Citation
{Li, Weinberger, Belongie, Koltun, and Ranftl} 2022

Citation
Citation
{Li, Weinberger, Belongie, Koltun, and Ranftl} 2022



8 MA, ET.AL.: OPEN-VOCABULARY SEMANTIC SEGMENTATION WITH FROZEN VLMS

Model Backbone PASCAL-5i COCO-20i

50 51 52 53 mIoU 200 201 202 203 mIoU

SPNet [51] ResNet101 23.8 17.0 14.1 18.3 18.3 - - - - -
ZS3Net [6] ResNet101 40.8 39.4 39.3 33.6 38.3 18.8 20.1 24.8 20.5 21.1
LSeg [27] ResNet101 52.8 53.8 44.4 38.5 47.4 22.1 25.1 24.9 21.5 23.4
LSeg [27] ViT-L/16 61.3 63.6 43.1 41.0 52.3 28.1 27.5 30.0 23.2 27.2

Fusioner (ours) ResNet101 46.8 56.0 42.2 40.7 46.4 26.7 34.1 26.3 23.4 27.6
Fusioner (ours) ViT-L/14 61.9 70.0 51.2 52.7 59.0 31.7 35.7 34.9 31.8 33.5

Table 2. Comparison of mIoU on PASCAL-5i and COCO-20i.

(a) Example image (b) Ground-truth (c) Our prediction (d) LSeg prediction

Figure 2. An example image and ground-truth of Mosaic-4 dataset, with models’ predictions.
The same color indicates the same category, i.e. “stealth_aircraft”, “iphone”, “groenendael” and
“abe’s_flyingfish” from top-left to bottom-right. Our model can distinguish different categories in-
puts compared with LSeg. Best viewed in color.

4.4 Robustness on Mosaic-4
Here, we measure the robustness of Fusioner trained on FSS-1000 using our synthesized
Mosaic-4 dataset. We take |W| = 4, i.e., 4 category embeddings as input for one image,
during training and testing, and generate 4 binary prediction for each category. For LSeg,
we input 4 categories together with text “others” representing the background, and conduct a
pixel-wise classification into 5 categories. As shown in Table 3, our model can significantly
outperform LSeg. In Figure 2, our model can better differentiate different textual inputs
along with their corresponding mask. However, LSeg is confused about “groenendael” and
“abe’s_flyingfish”, and segmenting “stealth_aircraft” and “iphone” with large false positives.

Model mIoU FB-IoU

LSeg [27] 19.5 58.2
Fusioner (ours) 53.7 76.3

Table 3. Results on Mosaic-4.

Model . Fusion Decoder 50 51 52 53 mIoU

B0-CLIP-L ! ! 61.9 70.0 51.2 52.7 59.0
B1-CLIP-L ! % 59.4 63.7 47.3 44.0 53.6
B2-CLIP-L % ! 48.3 54.4 41.4 42.2 46.6
B3-CLIP-L % % 16.7 21.7 20.0 20.9 19.8

Table 4. Ablation study on PASCAL-5i.

4.5 Ablation Study
To investigate the importance of each component in Fusioner, we conduct ablation studies
on the cross-modality fusion and the visual decoder, and change one variable at a time. All
experiments are based on the best model in Table 1, namely, model-B-CLIP-L. As illustrated
in Table 4, model-B0-CLIP-L with both fusion and decoder gives the best results. Directly
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upsampling the visual feature without visual decoder leads to about a 5% decline, while
breaking the connection between visual and text modalities by skipping the fusion module
results a sharp drop of 21% in performance, which demonstrates the necessity of our cross-
modality fusion module. However, when neither the fusion module nor the visual decoder is
applied, no trainable parameters are introduce in the entire pipeline, which, unsurprisingly,
yields the poorest result.

4.6 Transferability to Other Datasets
Ideally, open-vocabulary semantic segmentation should be able to handle any textual la-
bel regardless of the domain shift between different datasets. Here we evaluate on a more
generalizable setting, that is, to test our COCO-trained model on PASCAL VOC follow-
ing the work of [4]. As shown in Table 5, 20i means the model was trained on fold i of
COCO-20i and tested on the whole PASCAL VOC dataset, after removing the seen classes
in corresponding training split. Details can be found in supplementary. For evaluation, in
addition to LSeg [27], we also compare the latest few-shot method RPMM [52], CWT [33],
and PFENet [46]. It can be seen from Table 5 that our method outperforms the previous
state-of-the-art open-vocabulary method and is comparable to various few-shot methods.

Model Backbone Method 200 201 202 203 mIoU

RPMM [52]
ResNet50

5-shot 40.2 58.0 55.2 61.8 53.8
PFENet [46] 5-shot 45.1 66.8 68.5 73.1 63.4
CWT [33] 5-shot 60.3 65.8 67.1 72.8 66.5

RPMM [52]
ResNet50

1-shot 36.3 55.0 52.5 54.6 49.6
PFENet [46] 1-shot 43.2 65.1 66.5 69.7 61.1
CWT [33] 1-shot 53.5 59.2 60.2 64.9 59.5

LSeg [27] ResNet101 zero-shot 24.6 - 34.7 35.9 31.7
Fusioner (ours) ResNet101 zero-shot 31.0 53.7 41.7 51.3 44.4
Fusioner (ours) ViT-L zero-shot 39.9 70.7 47.8 67.6 56.5

Table 5. Transferabil-
ity from COCO-20i to
PASCAL VOC. Here,
LSeg results are gen-
erated by averaging
the three officially re-
leased checkpoints (no
ViT-L backbone, only
fold 0,2,3 for ResNet).

4.7 Qualitative Results
In Figure 3, we show the qualitative results for our model on open-vocabulary segmentation.
Specifically, the subimages in each row include the original image, and segmentation results
of seen and unseen (marked as *) categories. As can be seen, our proposed Fusioner can
successfully predict the unseen categories.

5 Conclusion
With the growing interest in Foundation Models [3], we believe it will be of great signifi-
cance for the community, to efficiently adapt these powerful vision and language models for
the downstream task of interest. Here, we introduce Fusioner, a simple, lightweight cross-
modality fusion module, that explicitly bridged a variety of self-supervised pre-trained vi-
sual/language models for open-vocabulary semantic segmentation. We evaluate on two stan-
dard benchmarks (PASCAL and COCO), and conduct thorough ablation studies to demon-
strate the effectiveness of our model. Despite the simplicity of the proposed idea, we demon-
strate state-of-the-art on all standard benchmarks.
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(a) image (b) pizza* (c) cup* (d) diningtable (e) person

(a) image (b) remote* (c) sofa* (d) cat (e) pottedplant

(a) image (b) tennisracket* (c) handbag* (d) dog (e) bottle

Figure 3. Qualitative results on COCO-20i. (a) input images, (b)-(e) segmentation masks for differ-
ent categories. Unseen categories are marked as *.
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