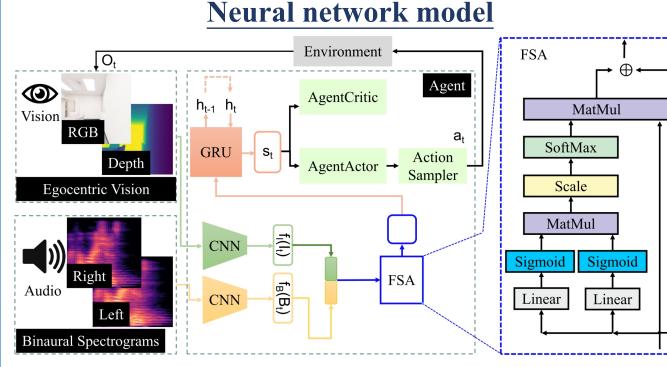


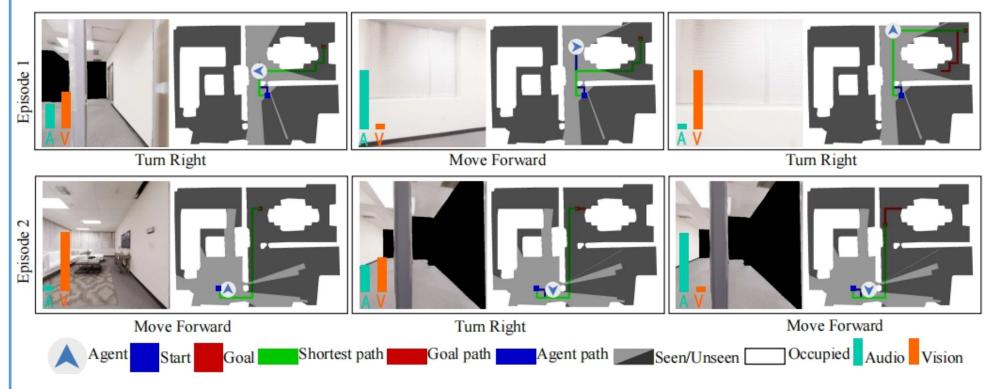
Pay Self-Attention to Audio-Visual Navigation Yinfeng Yu, Lele Cao, Fuchun Sun, Xiaohong Liu, Liejun Wang



- aware strategy to determine the relative contribution of each modal in real time.
- We experimentally benchmark our approach towards the state-of-the-art in 3D environments, showing the superior performance of FSAAVN.
- The thorough comparison of different variants of the fusion module (above Figure) and visual/audio encoder [The considered encoders: CNN (convolution neural network), ViT (vision transformer), Capsule.] provides valuable insights for future practitioners in this field.

Task

Audio-visual embodied navigation with a moving sound source as the target: a blue robot chases a moving target (red), a low-speed robot emitting sound.



The overview of FSAAVN: Feature Self-Attention Audio-Visual embodied Navigation.

Model	Fusion	Replica										Matterport3D										
		Telephone			Multiple heard			Multiple unheard			T	elephor	ne	Mu	ltiple h	eard	Multiple unheard					
	rusion	SPLT	SSPLT	SRT	SPLT	SSPLT	SRT	SPLT	SSPLT	SRT	SPLT	SSPLT	SRT	SPLT	SSPLT	SRT	SPLT	SSPLT	SRT			
		(†)	(†)	(†)	(†)	(†)	(†)	(†)	(†)	(†)	(†)	(†)	(†)	(†)	(†)	(†)	(†)	(†)	(†)			
FSAAVN	FSA	0.541	0.635	0.925	0.438	0.541	0.812	0.182	0.316	0.358	0.520	0.585	0.832	0.438	0.496	0.844	0.207	0.299	0.391			
SoundSpaces	Concat	0.531	0.604	0.892	0.354	0.462	0.764	0.152	0.255	0.317	0.454	0.511	0.797	0.431	0.475	0.818	0.180	0.254	0.350			
SoundSpaces-	EMul	0.493	0.597	0.861	0.430	0.522	0.770	0.168	0.304	0.326	0.457	0.523	0.801	0.433	0.481	0.821	0.182	0.258	0.355			
SoundSpaces-	EM	0.487	0.592	0.816	0.435	0.531	0.796	0.154	0.258	0.319	0.481	0.543	0.817	0.435	0.492	0.832	0.183	0.266	0.375			
CMHM	Concat	0.335	0.338	0.791	0.259	0.302	0.692	0.121	0.202	0.314	0.114	0.125	0.606	0.086	0.099	0.528	0.052	0.085	0.267			
AV-WaN	Concat	0.218	0.224	0.764	0.220	0.271	0.533	0.010	0.189	0.233	0.111	0.114	0.409	0.012	0.034	0.093	0.010	0.043	0.057			

Model	Eucion	Vision	Replica									Matterport3D									
			Telephone			Multiple heard			Multiple unheard			Telephone			Multiple heard			Multiple unheard			
	rusion		SPLT	SSPLT	SRT	SPLT	SSPLT	SRT	SPLT	SSPLT	SRT	SPLT	SSPLT	SRT	SPLT	SSPLT	SRT	SPLT	SSPLT	SRT	
			(†)	(†)	(†)	(†)	(†)	(†)	(†)	(†)	(†)	(†)	(†)	(†)	(†)	(†)	(†)	(†)	(†)	(†)	
FSAAVN	FSA	Depth	0.541	0.635	0.925	0.438	0.541	0.812	0.182	0.316	0.358	0.520	0.585	0.832	0.438	0.496	0.844	0.207	0.299	0.39	
SoundSpaces	Concat	Depth	0.531	0.604	0.892	0.354	0.462	0.764	0.152	0.255	0.317	0.454	0.511	0.797	0.431	0.475	0.818	0.180	0.254	0.35	
FSAAVN	FSA	RGBD	0.532	0.611	0.837	0.402	0.485	0.792	0.185	0.285	0.349	0.454	0.510	0.834	0.440	0.492	0.827	0.191	0.281	0.37	
SoundSpaces	Concat	RGBD	0.527	0.605	0.835	0.393	0.475	0.756	0.182	0.276	0.339	0.435	0.502	0.798	0.412	0.469	0.809	0.186	0.277	0.36	
FSAAVN	FSA	RGB	0.530	0.601	0.872	0.413	0.500	0.767	0.166	0.295	0.305	0.449	0.505	0.820	0.393	0.453	0.781	0.196	0.270	0.41	
SoundSpaces	Concat	RGB	0.522	0.593	0.829	0.386	0.477	0.741	0.140	0.260	0.267	0.397	0.451	0.815	0.371	0.429	0.772	0.193	0.269	0.37	
FSAAVN	FSA	Blind	0.470	0.544	0.833	0.328	0.425	0.703	0.141	0.229	0.294	0.369	0.424	0.787	0.339	0.387	0.766	0.162	0.241	0.35	
SoundSpaces	Concat	Blind	0.472	0.545	0.839	0.334	0.425	0.725	0.142	0.229	0.331	0.385	0.443	0.790	0.319	0.372	0.724	0.163	0.257	0.37	

Model	Fusion	Encoder	Replica									Matterport3D								
			Telephone			Multiple heard			Multiple unheard			Telephone			Multiple heard			Multiple unheard		
			SPLT	SSPLT	SRT	SPLT	SSPLT	SRT	SPLT	SSPLT	SRT	SPLT	SSPLT	SRT	SPLT	SSPLT	SRT	SPLT	SSPLT	SRT
			(†)	(†)	(†)	(†)	(†)	(†)	(†)	(†)	(†)	(†)	(†)	(†)	(†)	(†)	(†)	(†)	(†)	(†)
FSAAVN	FSA	CNN	0.541	0.635	0.925	0.438	0.541	0.812	0.182	0.316	0.358	0.520	0.585	0.832	0.438	0.496	0.844	0.207	0.299	0.391
SoundSpaces	Concat	CNN	0.531	0.604	0.892	0.354	0.462	0.764	0.152	0.255	0.317	0.454	0.511	0.797	0.431	0.475	0.818	0.180	0.254	0.350
ViT-V	Concat	ViT	0.521	0.584	0.871	0.329	0.415	0.713	0.138	0.233	0.304	0.412	0.465	0.797	0.012	0.188	0.027	0.013	0.170	0.020
Capsule	Concat	Capsule	0.426	0.503	0.810	0.262	0.372	0.580	0.154	0.278	0.330	0.317	0.382	0.742	0.246	0.302	0.623	0.178	0.255	0.445
ViTScratch-V	Concat	ViT	0.293	0.375	0.700	0.220	0.321	0.529	0.089	0.199	0.189	0.325	0.388	0.762	0.265	0.312	0.691	0.167	0.232	0.422

Dynamic visual and echo impact for two episodes. Columns corresponds to three sampled time steps. The green and orange bars represent the importance of audio and vision, respectively.

Tsinghua University (THU)

Results

Table 1: Overall performance comparison (STDEV < 0.01) using depth and sound input.

Table 2: Performance Comparison (STDEV < 0.01) of different vision modalities.

Table 3: Performance Comparison (STDEV < 0.01) of different visual/audio encoder backbones.

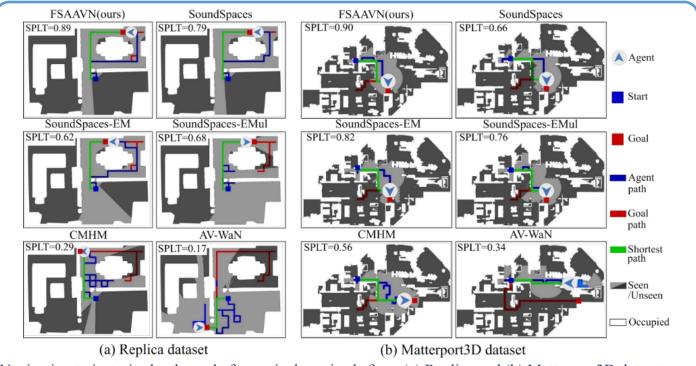
Table 1: shows that FSAAVN using FSA fusion, constantly performs the best (in boldface) on both datasets in all splitting settings.

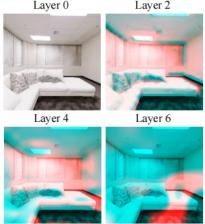
From Table 2, we can conclude that:

1) among all tested modalities, depth alone achieves the best performance;

2) with the same modality, FSA performs better than simple concatenation;

3) in the case of the blind, FSA seems slightly worse than concatenation, probably caused by FSA's higher flexibility and complexity than concatenation.

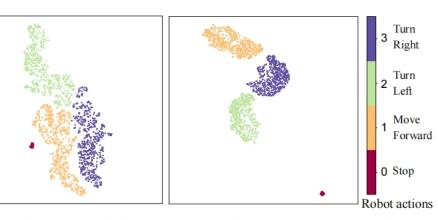

Table 3 shows the results of using different encoders while keeping the other parts the same.


We can see that the overly complex encoders (Capsule and ViT-based ones) are inferior to the CNN encoder.

We assume that higher complexity increases the convergence difficulty and thus makes policy learning more challenging.

The left figure shows the impact scores (for two episodes in two rows) on the egocentric robot view at different time

We can see that FSAAVN dynamically re-weight the modalities (according to the current surroundings) while chasing after the moving audio target.



(b) UMAP of audio features (left) and the state representations (right) (a) Learned visual features Visualization of visual feature, audio feature, and state representations from Replica dataset.

- To realize a more effective (than the existing methods) audio-visual feature fusion strategy during audio-visual embodied navigation, we design a trainable Feature Self-Attention (FSA) module that determines the relative contribution of visual/audio modal in real-time following the ever-changing context.
- FSAAVN is easy to train since it requires no extra aid like topology graphs and sound semantics.

Navigation trajectories by the end of a particular episode from (a) Replica and (b) Matterport3D dataset. Higher SPLT values and shorter blue paths indicate better performances.

Conclusion

- We propose an end-to-end framework (FSAAVN: feature self-attention audiovisual navigation) incorporating FSA to train robots to catch up with a moving audio target.
- Our comprehensive experiments validate the superior performance (both quantitatively and qualitatively) of FSAAVN compared to the state-of-the-art.
- We also conduct thorough ablation studies on mainstream visual modalities, signal (visual/audio) encoders and audio-visual fusion strategies, providing valuable insights for practitioners and researchers in this field.

Reference

[1] C. Chen*, U. Jain*, et al., SoundSpaces: Audio-Visual Navigation in 3D Environments, ECCV 2020

