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Introduction

Point cloud data is a fundamental representation of 3D geometry, contributing to numerous

applications in robotics, auto-navigation, augmented reality, etc. Limited byviewing angle, occlusion,

and acquisition resolution, raw point clouds are generally sparse and incomplete.

Figure 1. Incomplete point cloud samples

Unsupervised point cloud completion aims to infer the whole geometry of a partial object obser-

vation without requiring partial-complete correspondence.

Motivation

Generative Modelling Existing method leverages a one-to-one deterministic mapping to

complete a partial shape. However, recovering missing geometries corresponds to a

one-to-many stochastic mapping, so we proposed the first unsupervised completion method

based on generative modelling.

Latent TransportWe assume that representations of a partial point cloud and its valid complete

forms are close in the latent space, so we designed a latent-space energy-based model (EBM) in

an encoder-decoder architecture, aiming to learn a probability distribution conditioned on the

partial shape encoding.

Residual Sampling To train the latent code transport module and the encoder-decoder network

jointly, we introduce a residual sampling strategy, where the residual captures the domain gap

between partial and complete shape latent spaces.

Contribution

Our main contributions are summarized below:

We propose a novel energy-based latent transport mechanism, enabling generative modeling

of the unsupervised point cloud completion task for the first time.

We present a residual sampling strategy that allows joint training of a latent-space EBM and

an encoder-decoder for the first time.

Experimental results indicate that our model not only achieves state-of-the-art performance

on synthetic (ShapeNet) and real-world (KITTI, ScanNet, MatterPort3D) datasets, but is also

capable of generating explainable uncertainty maps.

Generative Modelling Framework

Let x ∈ X and y ∈ Y be samples from the partial and complete point cloud domain, respectively.
Our model consists of three main parts, namely

1. an encoder for point cloud code extraction and a decoder for point cloud reconstruction.

2. a latent-space energy-based model with energy function Eθ to fill the code gap between the

partial point cloud and its corresponding completion.

3. a point domain discriminator to achieve adversarial learning.
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Figure 2. Model overview

Latent-Space Energy Based Model and Residual Sampling

Challenges and solution of applying EBM for unsupervised point cloud completion

To define the conditional distribution of the complete shape latent code, we use an energy function

Eθ(zy, zx) parameterized by a deep neural network to map the code pair (zy, zx) to a scalar that
measures their compatibility. However, in the unsupervised setting, we are incapable of directly

modelling the compatibility of zx and zy due to lack of paired samples. Alternatively, we model the

conditional distribution of the residual rxy instead, representing the distribution gap between the

latent space of the two domains as:

pθ(rxy|zx) =
pθ(rxy, zx)∫

θ pθ(rxy, zx)dzx
=

exp[−Eθ(rxy, zx)]
Z(rxy; θ)

. (1)

Joint Training of EBM and the Encoder-Decoder Framework

Given the above formulation, a residual rxy can be generated from the conditional distrubution by

sampling with Langevin dynamics, then a complete shape code z̃x→y can be obtained as:

z̃x→y = zx + Ω(rxy) (2)

Here, we apply the stop gradient operation (Ω(·)) to avoid unfolding the Langevin dynamics iteration
and involving the second-order gradient of rxy in future gradient computation. Moreover, the

parameter θ of the energy function can be updated with gradient defined as:

∆θ = 1
N

N∑
i=1

Ez̃x→y∼pθ
[ ∂

∂θ
Eθ(z̃i

x→y)] − Ezy∼pzy
[ ∂

∂θ
Eθ(zy)] + C, (3)

where C is a constant which can be ignored during training.

Experiments

Table 1. Shape Completion results of supervised (upper three rows) and unsupervised (lower five rows) methods on

ShapeNet. The numbers shown are `2 CD↓ scaled by 104.

Method Avg. Plane Cabinet Car Chair Lamp Sofa Table Boat

3D-EPN 29.1 60.0 27.0 24.0 16.0 38.0 45.0 14.0 9.0

FoldingNet 9.2 2.4 8.5 7.2 10.3 14.1 9.1 13.6 8.8

PCN 7.6 2.0 8.0 5.0 9.0 13.0 8.0 10.0 6.0

Pcl2Pcl 17.4 4.0 19.0 10.0 20.0 23.0 26.0 26.0 11.0

C4C. 14.3 3.7 12.6 8.1 14.6 18.2 26.2 22.5 8.7

ShapeInv. 23.6 4.3 20.7 11.9 20.6 25.9 54.8 38.0 12.8

Cai et al. 13.6 3.5 12.2 9.0 12.1 17.6 26.0 19.8 8.6

Ours 9.4 2.3 12.2 5.8 12.0 12.8 10.3 13.8 5.7
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Figure 3. Qualitative Result on the ShapeNet

Our framework can provide uncertainty maps that summarize the stochasticity.
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Figure 4. Uncertainty maps. The first and second rows show partial observations and their complete ground truth,

and the third and fourth rows show two views of uncertainty maps.

The 33rd British Machine Vision Conference London, UK


