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1 Discussion on Impractical Latent-Space EBM Learning

In this section, we discuss why a direct end-to-end training method for latent-space energy-
based model (EBM) training is impractical.

To preform gradient descent training, we need gradients for each learnable parameter.
Suppose we deploy an EBM (Ey) in the latent-space of an encoder-decoder architecture.
We denote the encoder and decoder as £y and Dpg, respectively, where o and 8 are the
corresponding learnable parameters. Recall that we use Langevin dynamics [4] to sample
from the EBM, which is formulated:
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where ¢ represents Langevin steps, 0 is the step size, € ~ N(0,I) is Gaussian random noise,
and z() € R". Subsequently, we can formulate the forward pass as:
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where Sg) denotes the 7-th Langevin dynamics sampling iteration as shown by Eq. | and

there are T steps in total. Suppose the loss function is £(y), the gradient for the loss function

w.r.t B can be derived as ag—éy). However, the gradient for updating o involves unfolding the

Langevin dynamics as shown by the equation below:
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Eq. 3 can be expensive to evaluate since it contains a second-order derivative term. This is
shown by deriving a general gradient form of a Langevin dynamics step in Eq. 4:
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where I is an identity matrix and a%ZEQ (z=1) is the term that contains a second-order
derivative. Since a second-order derivative requires quadratic time and space complexity
for evaluation, it can be expensive or even infeasible to compute when the dimension of 7/
is large, e.g. n =2'°. In conclusion, directly back-propagating gradients is impractical for
large-scale problems.
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3 Training Algorithm

We provide pseudo-code to illustrate the training algorithm:

Algorithm 1: Training Algorithm

Input: partial point cloud domain X, complete point cloud domain Y
while not converged do

x~X

y~Y

> point cloud encoding

Zx — Eq(x)

zy « Ea(y)

> latent transport

0
Z§41y — Zx

for sample stept = 1to T do
| 22— S Eolny) +88, & ~N(OD)
end
Txy €= Zx __Z;AAy
Zﬁc%y St Q(rxy)
> latent variable decoding
¥ Dp(Zey)
¥+ Dglzy)
> update parameters
A0 <=V Liecon + M VaLsdelity — 22VaDy(F)
AB < Vg Lrecon + A1V g Lidelity — 22V Dy(X)
AY — VyLaay
A6O é—-V7el:ebm
update parameters based on Aa, A}, Ay, A6 using Adam optimizer

end

4 Implementation of Residual Sampling

We provide PyTorch-style implementation of the proposed residual sampling method:

def residual_sampling(z0, energy_function, n_step, step_size):
z = z0.clone().detach()
z.requires_grad = True
with torch.enable_grad():
for _ in range(n_step):
noise = step_size * torch.randn_like(z)
grad = torch.autograd.grad(energy_function(z), z, only_inputs=True)[0]
z = z - torch.square(step_size) * grad + noise
z = z0 - z.detach()
return z
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5 Inference Cost

We compare inference cost between our method and other methods, i.e. Cycle4Completion [6],
and Shapelnversion [7]. As shown in Table. 1, ours is much more efficient than Cy-
cle4Completion and Shapelnversion while achieving the best performance in terms of average
Chamfer Distance (CD) on the 3D-EPN [3] dataset. Note that our models can perform
inference faster than Cycle4Completion by 2.9 x 10~3 per sample and it is over 2000 times
faster than Shapelnversion. On the other hand, although our model contains 13M more

Table 1: Computational cost on our method compared with existing methods.
Method  #params Time (s) Avg. CD (x10%)

c4ac 2IM  93x 1073 14.3
Shapelnv. 41IM  1.5x 10! 23.6
Ours 34M 6.4 x 1073 9.4

parameters than Cycle4Completion, our method has a smaller inference time cost. This is
because Cycle4Completion contains a time-consuming folding-based decoder [5] while we
use an efficient attention-based decoder with a shallow MLP for decoding latent codes.

6 Additional ShapeNet samples

We provide additional ShapeNet completion results in this section. Our model, as well as two
existing methods (Cycle4Completion [6] and Shapelnversion [7]), are trained on the 3D-EPN
dataset [3]. For each of the eight categories in 3D-EPN dataset, 3 samples are visualized.
As illustrated by Figure 1, Figure 2, and Figure 3, our method can produce high-fidelity
completion with more details preserved.

7 Real-World samples

We provide qualitative results of our method compared with Cycle4Complete [6] and Shapeln-
version [7]. The real-world scans comes from two datasets, i.e. ScanNet [2] and Matter-
Port3D [1].

8 Additional Uncertainty Estimation Samples

This section provides additional uncertainty estimation results of our method as shown in
Figure 5 and Figure 6.
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Figure 1: Additional Qualitative Result on the 3D-EPN dataset. From left to right by column:
input incomplete point clouds, results from Cycle4Completion [6], Shapelnversion [7], ours,
and ground truth.
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Figure 2: Additional Qualitative Results on the 3D-EPN dataset (continued 1). From left to
right by column: input incomplete point clouds, results from Cycle4Completion, Shapelnver-
sion, ours, and ground truth.
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Figure 3: Additional Qualitative Results on the 3D-EPN dataset (continued 2). From left to
right by column: input incomplete point clouds, results from Cycle4Completion, Shapelnver-
sion, ours, and ground truth.
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Figure 4: Qualitative Result on the real-world dataset. From left to right by column: incom-
plete point clouds, results from Cycle4Completion, Shapelnversion, and ours.
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Figure 5: Additional uncertainty maps produced by our method. The input and ground truth
are shown in the first and second rows followed by two viewing angles of their uncertainty
map.



AUTHOR(S): BMVC AUTHOR GUIDELINES

Partial Observation

Ground Truth

Uncertainty Map
(view angle 1)

Uncertainty Map
(view angle 2)

Low I - —— High

Figure 6: Additional uncertainty maps produced by our method (continued). The input and
ground truth are shown in the first and second rows followed by two viewing angles of their

uncertainty map.
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