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Abstract

Face inpainting aims to complete the corrupted regions of the face images, which re-
quires coordination between the completed areas and the non-corrupted areas. Recently,
memory-oriented methods illustrate great prospects in the generation related tasks by in-
troducing an external memory module to improve image coordination. However, such
methods still have limitations in restoring the consistency and continuity for specific fa-
cial semantic parts. In this paper, we propose the coarse-to-fine Memory-Disentangled
Refinement Networks (MDRNets) for coordinated face inpainting, in which two collabo-
rative modules are integrated, Disentangled Memory Module (DMM) and Mask-Region
Enhanced Module (MREM). Specifically, the DMM establishes a group of disentan-
gled memory blocks to store the semantic-decoupled face representations, which
could provide the most relevant information to refine the semantic-level coordination.
The MREM involves a masked correlation mining mechanism to enhance the fea-
ture relationships into the corrupted regions, which could also make up for the correla-
tion loss caused by memory disentanglement. Furthermore, to better improve the inter-
coordination between the corrupted and non-corrupted regions and enhance the intra-
coordination in corrupted regions, we design InCo2 Loss, a pair of similarity based
losses to constrain the feature consistency. Eventually, extensive experiments conducted
on CelebA-HQ and FFHQ datasets demonstrate the superiority of our MDRNets com-
pared with previous State-Of-The-Art methods.
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1 Introduction

Face inpainting is an ill-posed problem, which aims to restore the corrupted regions with co-
ordinated contents as long as they appear plausible[13, 14, 27, 37, 40]. Since the corrupted
regions traverse multiple semantic parts, the coordinated inpainting generally requires con-
sistency within each semantic and coordination between different semantic parts. Recently,
face inpainting has shown great potential in real-world applications such as interactive face
editing and occluded face recognition. However, it is still challenging for coordinated face
recovery when the missing regions are large or the face contents are complex. Figure 1 shows
this inpainting task and illustrates several results of our method, which achieve coordinated
face inpainting with large masked regions.

Figure 1: Randomly sampled results from our MDRNets. The first four columns are from
the CelebA-HQ[11] dataset, and the last four columns are from FFHQ[12] dataset.

From the perspective of technology, face inpainting could be roughly divided into two
categories in recent years: patch-based methods [1] and deep learning based methods [14].
Specifically, the patch-based methods [25, 32, 43] generally sample image patches from the
remaining image regions and fuse these patches to recover the missing areas, which could
synthesize highly-textured complement contents. However, the above methods are difficult
to generate semantically reasonable results due to the lack of high-level image understanding.
Meanwhile, the patch matching process is usually time consuming and laborious. Further-
more, the large corrupted regions with insufficient remaining patches lead to over-smooth
completed results.

Recently, great progress has been made in inpainting tasks with the remarkable devel-
opment of Generative Adversarial Networks(GANs) [3]. Meanwhile, numerous researchers
employ GANs in face inpainting[14, 17, 30, 33, 36]. For the specificity of the inpainting
task, the vanilla convolution is upgraded in [15, 30, 37], which change the conventional
convolution mechanism and pay more attention to valid pixels. Additionally, many studies
improve the network to better recover the global structure by introducing relevant structural
priors [4, 20, 22, 26, 38]. Meanwhile, some researchers [16, 31, 36] combine the advantages
of the patch-based methods and deep learning based methods, which could deliver the in-
painting contents with both detailed textures and plausible semantics. However, the above
methods ignore the consistency and continuity for specific facial semantic parts, which is an
important problem for coordinated face inpainting.

Inspired by the above studies, we propose the coarse-to-fine Memory-Disentangled Re-
finement Networks (MDRNets) for coordinated face inpainting. Firstly, the coarse network
generates a coarse face, which could produce reasonable structural priors. Then, we design a
Disentangled Memory Module (DMM) to store the semantic-aware decoupled face latent
vectors from the non-corrupted regions. With this design, the disentangled semantic-level
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latent vectors ensure the coordination within each semantic. Next, we propose a Mask-
Region Enhanced Module (MREM) to enhance the feature relationships into the corrupted
regions. The MREM involves a masked correlation mining mechanism to compute the re-
lationships between the completed and the non-corrupted regions. Finally, we utilize the
output of MREM to refine the coarse face in the guided refinement network. For improv-
ing the intra-coordination in corrupted regions and inter-coordination between corrupted and
non-corrupted regions, we design InCo2 Loss, a pair of similarity based losses to constrain
the feature consistency. Specifically, we construct two types of similarity matrices to mine
deeper feature correlations from the corrupted and non-corrupted regions.

The main contributions can be summarized as follows:

• We propose MDRNets for coordinated face inpainting.

• We design two collaborative modules, DMM and MREM, which achieve the memory
disentanglement for semantic-level coordination and enhance the feature relationships
for face inpainting.

• We propose InCo2 Loss, a pair of similarity based losses to further improve the intra-
coordination in corrupted regions and the inter-coordination between the corrupted
and non-corrupted regions.

• Both the qualitative and quantitative results on CelebA-HQ and FFHQ datasets demon-
strate our method effectiveness which achieves State-Of-The-Art performance.

2 Related Work
2.1 Face Inpainting
Face inpainting has made tremendous progress in the past few years. In previous patch-based
methods, Zhuang et al. [43] and Tang et al. [25] extract prototypical image patches to fill
the missing areas. Xu et al.[31] utilize the similarity matrix to seek patches for consistent
texture generation. However, the patch-based methods are difficult to find suitable contents
when the corrupted regions is foreground and large. Then, great efforts are made in early
deep learning methods to maintain the image consistency and restore irregular masks. Yu
et al. [36] establish the contextual relationship into the face inpainting networks. Liu et
al. [15] propose partial convolution for irregular mask to filter out invalid pixels. Yu et al.
[37] design a learnable dynamic feature selection mechanism, which generalizes the partial
convolution. However, these early deep learning methods are limited in maintaining global
consistency among face components, and the completed areas are generally blurry. Recently,
some methods are designed to integrate the face priors or new network architectures. Li et
al. [13] propose SymmFCNet, which use the symmetry of face to recover facial details.
Liu et al. [18] introduce probabilistic diversity map, which controls the diversity extent of
the completed faces. Peng et al. [22] and Guo et al. [4] utilize facial structure and texture
constraints to guide the inpainting network. Wan et al. [26] and Yu et al. [38] employ
autoregressive transformers to inpaint diverse faces.

2.2 Memory Networks
Extensive deep learning methods possess the ability of memory, such as RNN [19], LSTM[6]
and GRU[2]. However, they are all limited in the long-term memory of information. To over-
come this shortcoming, Weston et al. [29] first propose memory networks, which employ
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explicit storage and attention mechanism to model the long-term information more effec-
tively. And due to the high efficiency for feature storage, memory networks have become
popular in the field of image generation. Yoo et al. [34] present a memory-augmented col-
orization network to produce high-quality image colorization with limited data. Huang et al.
[7] employ a dynamic memory block to record the prototypical patterns of rain degradations
for rain removal. Zhu et al. [41] introduce a multimodal memory module to refine blurred
images for text-to-image generation. Qi et al. [23] design a latent memory unit to preserve
the core storyline and history information for visual storytelling. In the face inpainting task,
Xu et al. [31] firstly propose a patch-based memory to enhance the completed image texture.

3 METHOD
In this section, we present our method in detail. Firstly, we introduce the overall MDRNets.
Then, we give the details of the specific components in the networks, especially the DMM
and MREM. Finally, the total objective functions of this model are described.
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Figure 2: An overview of MDRNets. 1-⃝,⊕ and⊗ denote the operations of 1-Mask, element-
wise addition and element-wise multiplication respectively.

3.1 Overview

The proposed MDRNets is shown in Figure 2. Firstly, given a masked image I and the cor-
responding mask M, we employ the pre-trained partial convolution based coarse network to
generate the coarse face P. Then we leverage the face parser [35] to obtain the correspond-
ing semantic map S of the coarse result. To finely recover each semantic part of the face
and maintain semantic coordination, the DMM (i.e. the memory M) is proposed to store the
semantic-aware latent vectors V from the non-corrupted regions. Then, the most relevant
memory slots in M could be retrieved using the semantic-level latent vectors Q of the coarse
face as queries. To enhance the feature, the MREM is proposed to construct a correlation
map, which could fuse the features of the non-corrupted regions into the corrupted regions.
Eventually, the generated features after MREM are injected into the Guided Refinement Net-
work through SPADE [21] to get the coordinated face Î.
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3.2 Disentangled Memory Module

To generate semantic-level coordinated faces, we propose the DMM to establish a group
of disentangled memory blocks, which stores the semantic-decoupled face representations.
As illustrated in Figure 2, we employ the Style Encoder to extract the style feature maps
Fs ∈ Rc×h×w from the coarse face P. Meanwhile, the face parser is used to obtain the cor-
responding semantic map S from P, which contains 14 different semantic categories in face
images (e.g., skin, eye). Then, we employ region-wise average pooling [42] to obtain latent
vectors Q ∈ Rn×c and V ∈ Rn×c, where n represents the number of semantic categories.

Memory blocks. We establish the disentangled memory blocks (14 blocks for 14 se-
mantic categories) to store the semantic-aware latent vectors V , which represents the non-
corrupted and accurate latent representations of the facial parts. Specifically, the proposed
memory M ∈Rn×m×c consists of n = 14 memory blocks, in which each memory block con-
tains m memory slots ei j ∈ Rc. Taking each semantic-level latent vector in Q as a query, we
could retrieve a relevant representation from its corresponding memory block. This memory-
based representation is obtained by integrating the m semantic-related memory slots with soft
scores. Meanwhile, we could update the semantic-level M by the semantic-aware V .

Memory Updating. The update of memory M is based on the similarity between the
latent vectors in Q and the corresponding memory slots. To begin with, we compute the i-th
semantic cosine similarity γi j between Qi and the j-th memory slot ei j, defined as

γi j =
ei jQT

i∥∥ei j
∥∥∥Qi∥

(1)

Then, we retrieve the memory slot eiφ j , which is most relevant with Qi in each training
batch.

k j = argmax
i

(γi j) (2)

To ensure the authenticity of the memory, we use the non-corrupted latent vector Vi
from the non-corrupted regions in each training batch to update the memory slot eik j , which
is also most similar and shares the same semantic with the query Qi.

eik j ← αeik j +(1−α)Vi (3)

where α ∈ [0,1] is a decay rate.
Memory Reading. After updating the memory M, we reconstruct memory-based la-

tent vectors Q̂i, which is most relevant to Qi. What’s more, we employ soft scores to
aggregate memory slots for end-to-end training. To begin with, the cosine similarity ma-
trix ϒ =

{
γi j|i = 1, ...,n, j = 1, ...,m

}
is computed by Eq.1 again. Then, the soft scores

A =
{

ai j|i = 1, ...,n, j = 1, ...,m
}

are formulated by a softmax operation.

ai j =
exp(γi j)

∑
m
j=1 exp(γi j)

(4)

Finally, the memory-based latent vectors Q̂i is constructed by aggregating memory slots
with the soft scores.

Q̂i =
m

∑
j

ai jei j (5)
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3.3 Mask-Region Enhanced Module
To enhance the feature representation of the corrupted regions, we propose MREM, which
consists of feature fusion and Masked Correlation Mining (MCM). To begin with, we broad-
cast memory-based latent vectors Q̂ to semantic map S, which obtain memory-based feature
maps. Meanwhile, we obtain FV by broadcasting V to semantic map S. Then, we employ
the mask to achieve feature fusion, which ensures the fused features both come from the
“real” image features and share great similarity at the semantic level. The above processes
are shown in Figure 2.
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…
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·
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Figure 3: Detailed illustration of the Masked Correlation Mining (MCM).⊙,⊕ and⊗ denote
the dot product, element-wise addition and element-wise multiplication respectively.

To focus on feature relationships, we further design the MCM, which consists of a cor-
relation mining module and mask multiplication. The correlation mining module contains
three branches, in which the first two branches compute the correlations within the features
and then match the third branch. To begin with, We apply the 1 × 1 convolutional layer to
transform the input features into two independent representations, and then utilize the unfold
operation to extract N feature patches P ∈ RC×Hp×Wp . Next, each feature patch is reshaped
into a feature vector. The similarity matrix Φ ∈ RN×N representing the correlations between
each patch can be computed by dot product. Thus, we could update each patch by the sim-
ilarity matrix Φ. Then, the mask multiplication preserves the feature enhancement of the
corrupted regions. Finally, the correlation-enhanced corrupted regions are fused with the
input features by element-wise addition.

3.4 Guided Refinement Network
The Guided Refinement Network consists of gated convolutional layers [37], gated Res-
Blocks, and SPADE ResBlocks [21]. Firstly, we encode the P to provide the texture of the
non-corrupted regions for the final face generation. Then, the fused features Ff after MREM
are injected into the Guided Refinement Network by SPADE as shown in Figure 2, which
facilitate the final coordinated face. The more detailed description of the Guided Refinement
Network is given in supplementary materials.

3.5 Objective Functions
In this section, we introduce the proposed InCo2 loss in detail and present the objective
functions of our method.

In face inpainting, it is reasonable to focus on corrupted region reconstruction. Mean-
while, coordinated face inpainting between the completed and the non-corrupted areas is also
a key point. In this paper, we propose InCo2 Loss to further constrain the feature consistency
for face coordination. Specifically, the InCo2 Loss includes a pair of similarity based losses,
Intra-class Coordination loss and Inter-class Coordination loss. The intra-class coordination
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Figure 4: Detailed illustration of InCo2 loss.

requires the coordinated relationships among the various semantic features in corrupted re-
gions. Similarly, inter-class coordination requires coordinated feature relationships between
the completed regions and the non-corrupted regions.

Concretely, there are two steps to establish the InCo2 Loss, as shown in Figure 4. In
the pretrain phase, we employ an encoder-decoder based reconstruction network to obtain
the implicit representations of face from the middle layer. Then we employ the pretrained
encoder and the mask to obtain two representationsM(·) and M̂(·) of the mask and non-
mask regions by region-wise average pooling[42], respectively. The intra-class coordination
loss and the inter-class coordination loss are defined as:

Lintra =
∥∥M(Î)×M(Î)T −M(Igt)×M(Igt)

T∥∥
1 (6)

Linter =
∥∥M(Î)×M̂(Î)T −M(Igt)×M̂(Igt)

T∥∥
1 (7)

Therefore, InCo2 Loss is defined as:
LInCo2 = Lintra +Linter (8)

In addition to the InCo2 Loss, we follow the previous work [22, 26] and utilize the seman-
tic loss[14], reconstruction loss[18], perceptual loss[10], style loss[8], adversarial loss[9] and
total variation loss[15] to optimize our network. The more detailed description of the objec-
tive function is given in supplementary materials.

4 Experimental Settings
Datasets and Evaluation Metrics. We evaluate the proposed method on CelebA-HQ [11]
and FFHQ [12]. We follow the split in [37] to produce 28,000 training images and 2,000
validation images in CelebA-HQ. For FFHQ, we preserve the last 2,000 images for test,
and use the rest images for train. Irregular masks provided by [15] are employed for both
training and evaluation. The L1 error, Fréchet Inception Distance (FID) [5], Peak Signal-
to-Noise Ratio (PSNR), Structure Similarity (SSIM) [28] are used to evaluate the quality of
the results. The L1 error, PSNR and SSIM compare the differences between the completed
image and ground truth. The FID calculates the distance of feature distributions between the
completed face and ground truth.

Implementation Details. The proposed method is implemented in PyTorch with 4
Nvidia Titan Xp GPUs. The image and mask are resized to 256 × 256 for training and
evaluation. Our model is optimized using Adam optimizer with β1=0.9 and β2=0.99. We
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train the model for 45 epochs with the batchsize of 8. The learning rate is set to 2e-4. For
coarse network, We replace the vanilla convolution of the U-Net architecture [24] with par-
tial convolution [15] as the coarse network. The coarse network is trained on CelebA-HQ for
100 epochs, and other settings are the same as the MDRNets. For the reconstruction network
in Figure 4, we train the network for 30 epochs, with the same settings as above.

4.1 Qualitative Analysis

Input Ground Truth PConv[15] DeepFillv2[42] PIC[45] CTSDG[4]    DSI[25] ICT[31] Ours

Figure 5: Randomly sampled results of our MDRNets compared with the previous SOTA
methods. Zoom in for better details.

We compare our methods with previous state-of-the-art approaches, including PConv
[15], DeepFillv2 [37], PIC [39], CTSDG [4], DSI [22] and ICT [26]. All the results are
obtained by using pre-trained models or implementation code published by the authors. We
show the results of qualitative comparisons in Figure 5. PConv and DeepFillv2 generate
blurry results since these models can not capture valid contextual information. PIC gener-
ates reasonable facial structures. However, the results of PIC suffer from artifacts due to the
lack of adequate correlation. CTSDG and DSI obtain distorted faces since these models use
low-level structural information, which is incomplete in wide corrupted regions. ICT could
generate relatively satisfactory results. However, the results of ICT still have limitations in
detailed textures since the model cannot perform fine restoration of each semantics. Com-
pared with these methods, our model achieves better results on both detailed textures and
face coordination. More qualitative results are presented in the supplementary materials.

4.2 Quantitative Analysis
As shown in Table 1, we quantitatively evaluate the proposed method at irregular mask ra-
tios of 1-20%, 20-40% and 40-60%. As we can see, our proposed method outperforms other
State-Of-The-Art methods on CelebA-HQ and FFHQ datasets. Especially, under the largest
mask ratio, our method has distinct improvements compared with other methods. Specif-
ically, the L1 error and FID are reduced by 0.963% and 4.661. Meanwhile, the PSNR and
SSIM are improved by 1.687 and 0.035, compared to the sub-optimal result on the CelebA-
HQ. Similarly, the L1 error and FID are reduced by 0.501% and 0.401. The PSNR and
SSIM are improved by 1.303 and 0.032, compared to the sub-optimal result on the FFHQ.
The above results demonstrate the superiority of our method in coordinated face inpainting,
especially with large masked regions.
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Table 1: Quantitative comparisons with SOTA methods on CelebA-HQ and FFHQ datasets.
(↓ Lower is better. ↑ Higher is better)

Methods Dataset L1(%) ↓ FID ↓ PSNR ↑ SSIM ↑
1-20% 20-40% 40-60% 1-20% 20-40% 40-60% 1-20% 20-40% 40-60% 1-20% 20-40% 40-60%

PConv [15]

CelebA-HQ [11]

1.131 2.311 4.363 12.716 27.957 42.594 32.240 26.085 21.900 0.941 0.862 0.762
DeepFillv2 [37] 0.788 2.066 3.968 9.766 22.793 29.243 32.700 25.998 21.943 0.944 0.848 0.736
PIC [39] 0.780 2.036 4.311 4.190 11.035 21.360 33.006 25.961 21.263 0.951 0.859 0.730
CTSDG [4] 1.350 2.213 3.900 9.171 14.324 22.889 32.198 26.823 22.490 0.927 0.856 0.747
DSI [22] 0.820 2.077 4.149 9.037 20.327 29.040 32.699 26.107 21.708 0.938 0.831 0.704
ICT [26] 0.949 2.004 3.901 3.136 8.715 16.747 33.416 26.639 22.013 0.959 0.879 0.765
Ours 0.585 1.451 2.937 2.369 6.410 12.086 35.772 28.669 24.177 0.968 0.900 0.800
PConv [15]

FFHQ [12]

0.720 2.178 4.411 12.208 30.403 45.709 32.592 25.422 21.237 0.955 0.867 0.761
DeepFillv2 [37] 0.715 2.104 4.250 12.062 29.276 40.295 32.428 25.470 21.301 0.946 0.845 0.725
PIC [39] 0.709 2.099 4.573 5.411 14.344 27.334 32.640 25.490 20.819 0.952 0.854 0.719
CTSDG [4] 0.419 1.532 3.569 3.916 13.477 28.495 34.946 27.044 22.272 0.968 0.888 0.765
DSI [22] 0.746 2.067 4.340 10.483 25.772 39.127 32.659 25.780 21.241 0.941 0.834 0.702
ICT [26] 0.982 2.085 4.036 3.244 8.360 14.149 33.172 26.373 21.809 0.959 0.877 0.762
Ours 0.470 1.395 3.068 2.473 7.170 13.748 36.046 28.333 23.575 0.972 0.903 0.797

4.3 Ablation Study
In this section, we perform extensive experiments to verify the effectiveness of each module
and loss in our model. Then we conduct memory design ablation analysis. All the ablation
experiments are performed on the CelebA-HQ dataset. Meanwhile, the ablation study of
memory design is given in supplementary materials.

Input Fullw/o MREMw/o MREM 
w/o DMM FullInput w/o Lsem w/o Linter w/o Lintra

(a) (b)

Figure 6: The qualitative comparisons result. (a) The qualitative comparisons of module
ablation; (b) The qualitative comparisons of loss ablation. Zoom in for better details.

Module Ablation. We further perform module ablation to demonstrate the effectiveness
of each module. There are three models with different settings for experimental comparison:
1). w/o MREM + w/o DMM. This model removes the MREM and DMM. The features
extracted by the style encoder are injected into the Guided Refinement Network directly. 2).
w/o MREM. This model removes the MREM and uses the fusion features after DMM to
inject. 3). Full. Our proposed modules are all used in experiments. The module ablation
results are shown in Table 2. Figure 6 (a) also shows qualitative comparisons of module
ablation. The w/o MREM + w/o DMM. model is difficult to recover detailed textures at the
semantic level, especially when some semantic categories are completely masked (e.g. the
eyes of the first person in Figure 6 (a) are more blurred than the Full model. ) Meanwhile, the
w/o MREM recovers some detailed textures, but the faces suffer from coordination issues.
In addition, the Full model achieved satisfactory results both in detailed textures and coor-
dination. Finally, the Full model achieves the best performance. The above experimental
results demonstrate that all our proposed modules are effective.

Loss Ablation. We conduct the loss ablation experiments to demonstrate the effective-
ness of Lsem loss and the proposed LInCo2 loss. The quantitative results of loss ablation are
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Table 2: The evaluation results of ablation study.
Metrics Mask

Ratio
Models

w/o MREM
w/o DMM w/o MREM w/o Lsem w/o Lintra w/o Linter Full

L1(%) ↓

1-20%

0.625 0.595 0.589 0.587 0.588 0.585
FID ↓ 2.698 2.221 2.400 2.472 2.421 2.369
PSNR ↑ 35.118 35.467 35.676 35.646 35.639 35.772
SSIM ↑ 0.963 0.967 0.967 0.967 0.967 0.968
L1(%) ↓

20-40%

1.550 1.473 1.461 1.452 1.462 1.451
FID ↓ 7.205 6.529 6.541 7.011 6.874 6.410
PSNR ↑ 28.283 28.470 28.594 28.631 28.528 28.669
SSIM ↑ 0.890 0.897 0.898 0.897 0.897 0.900
L1(%) ↓

40-60%

3.063 2.959 2.954 2.939 2.961 2.937
FID ↓ 13.737 13.359 12.367 13.721 13.292 12.086
PSNR ↑ 24.017 24.080 24.111 24.171 24.171 24.177
SSIM ↑ 0.789 0.798 0.796 0.795 0.794 0.800

shown in Table 2. The Full model achieves the best performance on all metrics. Meanwhile,
the removal of any loss function will degrade the performance of the model integrally. Fig-
ure 6 (b) shows the qualitative results of loss ablation. The Lsem is semantic loss, which is
detailed in the supplementary material. The w/o Lsem can lead to unclear semantic bound-
aries. Meanwhile, w/o Linter can not maintain coordination between corrupted regions and
non-corrupted regions. Furthermore, w/o Lintra causes inconsistency within the corrupted
regions. The Full model could generate reasonable results.

5 CONCLUSIONS
In this paper, we propose MDRNets for coordinated face inpainting. Specifically, we pro-
pose two collaborative modules, the DMM to establish a group of disentangled memory and
the MREM to enhance feature correlation. Meanwhile, we design InCo2 Loss, a pair of
similarity based losses to better improve the inter-coordination between the corrupted and
non-corrupted regions and enhance the intra-coordination in corrupted regions. Extensive
experiments conducted on CelebA-HQ and FFHQ datasets demonstrate the superiority of
our MDRNets.

Acknowledgements. This work is supported by China Postdoctoral Science Foundation un-
der Grant 2022M713362 and National Natural Science Foundation of China projects under
Grant No.62006227.
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