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Abstract

In the supplementary materials, we first introduce the detailed network architectures
of the coarse network, guided refinement network, and the reconstruction network
of the InCo2 loss. Then, we give the detailed of the objective functions and training
algorithm. Meanwhile, we introduce the ablation study of memory design. Finally, we
illustrate more qualitative comparisons and visual results.

1 Detailed Network Architectures
The detailed architecture of the coarse network is shown in Table 1. The ec and dc represent
the encoder and decoder respectively. In the coarse network, vanilla convolution is replaced
by partial convolution[4]. BN denotes Batch Normalization, Act indicates the type of non-
linear layer, ReLU denotes ReLU non-linear activation, LReLU indicates the Leaky ReLU
activation with the slope of 0.2. The last convolutional layer employs a Tanh non-linear
activation function. Table 2 and Table 3 illustrate the architectures of the guided refinement
network and reconstruction network of the InCo2 loss, respectively. The Gated Resblock
is shown in Figure 1. In the guided refinement network, we employ SPADE [6] to fuse the

� Muyi Sun is the corresponding author.
© 2022. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

Citation
Citation
{Liu, Reda, and etprotect unhbox voidb@x protect penalty @M  {}al} 2018

Citation
Citation
{Park, Liu, and etprotect unhbox voidb@x protect penalty @M  {}al} 2019



2 ZHUOJIE.WU ET AL: SHOWFACE

G
ated Conv

ReLU

BN

G
ated Conv

BN

Figure 1: Illustration of the Gated Resblock in the guided refinement network. In each Gated
Resblock, there are two Gated Convlution, two BN and one ReLU layers.

features after Mask-Region Enhanced Module (MREM). The SPADE Resblock is illustrated
in Figure 2.

For the memory M, we set the number of slots in each semantic-aware memory block as
128, and the dimension of each memory slot as 256. The memory consists of 14 semantic-
aware memory blocks. In practice, the decay rate is set to 0.999 in Eq.3 (in the main paper).

Table 1: The architecture of the coarse network.
Layer Settings BN Act Input Output

ec_1 7×7, 64 N ReLU Iin,M Fec_1

ec_2 5×5, 128 Y ReLU Fec_1 Fec_2

ec_3 5×5, 256 Y ReLU Fec_2 Fec_3

ec_4 3×3, 512 Y ReLU Fec_3 Fec_4

ec_5 3×3, 512 Y ReLU Fec_4 Fec_5

ec_6 3×3, 512 Y ReLU Fec_5 Fec_6

ec_7 3×3, 512 Y ReLU Fec_6 Fec_7

dc_1 3×3, 512 Y LReLU Fec_7,Fec_6 Fdc_1

dc_2 3×3, 512 Y LReLU Fdc_1,Fec_5 Fdc_2

dc_3 3×3, 512 Y LReLU Fdc_2,Fec_4 Fdc_3

dc_4 3×3, 256 Y LReLU Fdc_3,Fec_3 Fdc_4

dc_5 3×3, 128 Y LReLU Fdc_4,Fec_2 Fdc_5

dc_6 3×3, 64 Y LReLU Fdc_5,Fec_1 Fdc_6

dc_7 3×3, 3 N Tanh Fdc_6,Iin Iout
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Table 2: The architecture of the guided refinement network.
Layer Settings Stride Norm Act

Gated Conv 3×3, 64 2 BN ReLU

Gated Conv 3×3, 128 2 BN ReLU

Gated Conv 3×3, 256 2 BN ReLU

Gated Resblock
3×3, 256

- BN ReLU
3×3, 256

Gated Resblock
3×3, 256

- BN ReLU
3×3, 256

Gated Resblock
3×3, 256

- BN ReLU
3×3, 256

Gated Resblock
3×3, 256

- BN ReLU
3×3, 256

Upsample 2 - - -

SPADE Resblock
3×3, 256

- - LReLU
3×3, 256

Upsample 2 - - -

SPADE Resblock
3×3, 128

- - LReLU
3×3, 128

Upsample 2 - - -

SPADE Resblock
3×3, 64

- - LReLU
3×3, 64

Out_Conv 3×3, 3 1 - Tanh

Table 3: The architecture of the reconstruction network for InCo2 loss.
Encoder Settings BN Act Decoder Settings BN Act

ResBlock
3×3, 64

Y LReLU Upsample 2 - -
3×3, 64

MaxPool 2 - - ResBlock
3×3, 256

Y LReLU
3×3, 256

ResBlock
3×3, 128

Y LReLU Upsample 2 - -
3×3, 128

MaxPool 2 - - ResBlock
3×3, 128

Y LReLU
3×3, 128

ResBlock
3×3, 256

Y LReLU Upsample 2 - -
3×3, 256

MaxPool 2 - - ResBlock
3×3, 64

Y LReLU
3×3, 64

ResBlock
3×3, 512

Y LReLU Conv 3×3, 3 N Tanh
3×3, 512
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Figure 2: Illustration of the SPADE Resblock in the guided refinement network. The dash
line denotes that the branch with the cascaded SPADE and Gated 1 × 1 convolution are used
only when the channel number of the input does not equal to the output.
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2 Objective Functions

In this section, we present the specific objective functions of our method, which could not
be illustrated in the main paper due to the layout restrictions.

In the following, we first introduce the semantic loss [3] appropriately applied in our
method. Then, we illustrate the reconstruction loss, perceptual loss, style loss, adversarial
loss and total variation loss, inherited from the previous generation methods[4, 5, 7, 9].

Semantic Loss. Since the semantic map S obtained from coarse face P may bring some
errors, we employ semantic loss Lsem to refine their influences, which computes the Cross
Entropy of parsing maps between the completed image Î and ground truth Igt .

Lsem = CE(P(Igt),P(Î)) (1)

where P denotes the inference process of face parser.
Reconstruction Loss. The reconstruction loss Lrec calculates the L1 distance between

the completed image Î and ground truth Igt , which encourages the Î to be similar with Igt at
the pixel level.

Lrec =
∥∥Î − Igt

∥∥
1 (2)

Perceptual Consistency Loss. The perceptual loss Lperc measures the L1 distance be-
tween Î and Igt in the feature space, which penalizes the perceptual and semantic discrepancy.

Lperc = ∑
i

∥∥φi(Î)−φi(Igt)
∥∥

1 (3)

where φi(·) denotes the activation of the ith layer from the pre-trained VGG-19 network [8].
Style Consistency Loss. The style loss Lstyle calculates the statistical errors between the

features of Î and Igt to constrain the style consistency.

Lstyle = ∑
i

∥∥G(φi(Î))−G(φi(Igt))
∥∥

1 (4)

where G denotes the Gram matrix.
Adversarial Loss. We employ the discriminator D in PatchGAN [1] to match distribu-

tions between Î and Igt , which promotes the generator to generate realistic images.

Ladv = EIgt [log(D(Igt))]+EÎ [log(1−D(Î))] (5)

Total Variation Loss. We adopt the total variation loss Ltv to smooth the completed
image Î.

Ltv =
∥∥Î
∥∥

tv (6)

In summary, the overall objective function can be formulated as:

Ltotal =λ1LInCo2 +λ2Lsem +λ3Lrec +λ4Lperc

+λ5Lstyle +λ6Ladv +λ7Ltv
(7)

where λi,{i=1,2,...,7} are hyper-parameters to balance each item.
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3 Training Algorithm
The pseudo code of MDRNets is shown in Algorithm 1. We denote the input image as
Iin = Igt ⊗M, the pre-trained coarse network as Gcoarse, the face parser as Gparser, the recon-
struction network as Gre, our MDRNets as GMDRNets, and discriminator as D. The encoder
of reconstruction network is denoted as Dec. For face parser Gparser, we employ the open-
source pre-trained face segmentation model BiseNet[10]. To begin with, Gcoarse and Gre are
trained with the training set of CelebA-HQ [2]. Then GMDRNets is trained on the correspond-
ing training set. All models are optimized using Adam optimizer with β1=0.9 and β2=0.99.
For the Gcoarse and Gre, we fixed the learning rate of 2e-4 to train 100 epochs and 30 epochs,
respectively. For the GMDRNets, we firstly fix the learning rate of 2e-4 to train 35 epochs, and
then linearly decay the learning rate to zero for last 10 epochs.

Algorithm 1 The pseudo code of MDRNets.
Input:

1: Igt : Image data;
2: M: Mask data;
3: E: The number of epoch = 45;

Output:
4: Î: Completed image;
5: Step1: Image pre-processing;
6: Resized into 256 × 256;
7: Masked image Iin = Igt ⊗M;
8: Step2: Network Initialization;
9: Initialize weights of Gcoarse, Gre, GMDRNets, D;

10: w = {wGcoarse ,wGre ,wGMDRNets ,wD}= 0;
11: Step3: Pre-train Gcoarse and Gre;
12: P = Gcoarse (Iin,M);
13: ˆIgt = Gre (Igt);
14: Step4: Network Training;
15: Load wGcoarse , wGparser , and Dec;
16: for t = 0 to E do
17: Compute the prediction Î = GMDRNets (Iin,M);
18: Compute the LD

adv loss in Eq.13;
19: Update D;
20: Compute the Ltotal loss in Eq.15;
21: Update GMDRNets;
22: end for
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4 Ablation Study of the Memory Design
The number of slots in each memory block is a question worth considering. That is, how
many slots do we need to store the latent vectors for each semantic ?

In the Table 4, we present the results for different m. We can clearly see that the m =
128 could obtain the best results in the disentangled memory. Meanwhile, we conduct a
comparison on whether the memory needs to be disentangled. According to the results, the
disentangled memory with m = 128 obtains better performance for face inpainting.

Table 4: The evaluation results of Memory Design Ablation. m denotes the slot number for
each memory block. Non-Disentangled denotes using non-disentangled memory.

Metrics Mask
Ratio

Disentangled Non-Disentangled
m=32 m=64 m=128 m=256 m=512 same volume as m=128

L1(%) ↓

1-20%

0.627 0.584 0.585 0.600 0.618 0.662
FID ↓ 3.194 2.308 2.369 2.670 2.927 5.244
PSNR ↑ 35.214 35.718 35.772 35.441 35.397 34.987
SSIM ↑ 0.963 0.968 0.968 0.966 0.965 0.962
L1(%) ↓

20-40%

1.547 1.452 1.451 1.494 1.532 1.639
FID ↓ 8.017 6.421 6.410 7.741 7.626 15.452
PSNR ↑ 28.344 28.593 28.669 28.391 28.452 28.339
SSIM ↑ 0.891 0.898 0.900 0.893 0.893 0.893
L1(%) ↓

40-60%

3.046 2.951 2.937 3.000 3.037 3.177
FID ↓ 14.124 12.523 12.086 15.557 13.712 24.495
PSNR ↑ 24.017 24.079 24.177 23.996 24.901 24.152
SSIM ↑ 0.791 0.796 0.800 0.791 0.793 0.800

5 Additional Qualitative Comparisons
In Figure 3 and Figure 4, we present qualitative comparisons at different mask ratios on
the CelebA-HQ and FFHQ datasets. 1% ∼ 20%, 20% ∼ 40% and 40% ∼ 60% represent the
three types of different mask ratios respectively. In Figure 3 and Figure 4, each two-column
represents the comparisons of one mask ratio. As can be seen from these figures, all the
methods can achieve satisfactory results when the mask ratio is small with 1% ∼ 20%. With
the increase of the mask ratio, the previous methods suffer from artifacts, blurred structures,
texture detail losses, and especially the lack of face coordination. In contrast, our method
achieves satisfactory results with semantic-level coordination.

Further, more qualitative comparisons with large mask on the CelebA-HQ and FFHQ
datasets are shown in Figure 5 and Figure 6. It can be seen that our method generates more
coordinated, textured, and realistic results than its counterparts.

6 Additional Visual Results
Figure 7 shows more visual results achieved by our method on the CelebA-HQ and FFHQ
datasets. It can be observed that our method could generate desirable results with high image
quality as the ground-truth faces. As an ill-posed problem, our MDRNets could generate
plausible and coordinated contents.



8 ZHUOJIE.WU ET AL: SHOWFACE

Input

PConv

DeepFillv2

PIC

CTSDG

DIS

ICT

Ours

Ground 
Truth

1% ~ 20% 20% ~ 40% 40% ~ 60%

Figure 3: The qualitative comparisons with different mask ratios on the CelebA-HQ dataset.
1% ∼ 20%, 20% ∼ 40% and 40% ∼ 60% represent different mask ratios respectively, and
each two-column represents a mask ratio. Zoom in for better details
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Figure 4: The qualitative comparisons with different mask ratios on the FFHQ dataset. 1%∼
20%, 20%∼ 40% and 40%∼ 60% represent different mask ratios respectively, and each two-
column represents a mask ratio. Zoom in for better details
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Figure 5: The qualitative comparisons on the CelebA-HQ dataset. Zoom in for better details



ZHUOJIE.WU ET AL: SHOWFACE 11

Input

PConv

DeepFillv2

PIC

CTSDG

DIS

ICT

Ours

Ground 
Truth

Figure 6: The qualitative comparisons on the FFHQ dataset. Zoom in for better details
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Figure 7: More visual results on the CelebA-HQ and FFHQ datasets. The first four rows are
from the CelebA-HQ dataset, and the last four rows are from the FFHQ dataset. Our method
could generate high-quality faces as the ground-truth faces. Zoom in for better details.
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