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Abstract

The paper presents a new method, SearchTrack, for multiple object tracking and
segmentation (MOTS). To address the association problem between detected objects,
SearchTrack proposes object-customized search and motion-aware features. By main-
taining a Kalman filter for each object, we encode the predicted motion into the motion-
aware feature, which includes both motion and appearance cues. For each object, a
customized fully convolutional search engine is created by SearchTrack by learning a
set of weights for dynamic convolutions specific to the object. Experiments demon-
strate that our SearchTrack method outperforms competitive methods on both MOTS
and MOT tasks, particularly in terms of association accuracy. Our method achieves
71.5 HOTA (car) and 57.6 HOTA (pedestrian) on the KITTI MOTS and 53.4 HOTA
on MOT17. In terms of association accuracy, our method achieves state-of-the-art per-
formance among 2D online methods on the KITTI MOTS. Our code is available at
https://github.com/qa276390/SearchTrack.

1 Introduction
Recently, deep learning has contributed significantly to advances in various core computer
vision tasks, including object detection and image segmentation. Nevertheless, there are still
a number of important tasks that remain challenging. The tracking of multiple objects is one
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of them, as noted by Voigtlaender et al. [18]. Multiple-object tracking (MOT) and multiple-
object tracking and segmentation (MOTS) have received increased attention in recent years.
MOT requires the tracking of objects using bounding boxes, while MOTS requires pixel-
level accuracy. In the MOTS problem, detection, segmentation, and tracking have to be
considered simultaneously [18].

A main challenge of the MOTS task is the association of instances of the same object
at different times. A number of factors make it challenging, including object deformations,
changes in view, differences in illumination, occlusions, and ambiguities, among others.
Object appearance and object motion are popular cues for resolving the association between
detected object instances. The appearance cue is the most popular, and there have been
many attempts to derive unique and invariant representations for objects from pixel val-
ues. TrackR-CNN [18] and PointTrack [23] are notable examples. TrackR-CNN, based
on Mask R-CNN [5], uses region-of-interest (ROI) for cropping the feature map to gener-
ate re-identification (re-ID) feature encoding appearance cues for each instance. PointTrack
converts the input frame into a 2D point cloud representation and separates the point cloud
into foreground and background for learning instance embeddings. Object motion is another
popular cue for tracking, providing the object’s location over time. As the tracked object in
MOT(S) is highly correlated across consecutive frames, tracing its trajectory is helpful for
tracking. SORT [3] is a motion-based MOT tracker, which uses a Kalman filter to predict
the object’s motion and finds matches between objects using the Hungarian algorithm.

In this paper, we propose a new MOT(S) architecture, SearchTrack, which integrates
both object appearance and motion cues to resolve the association problem. In order to bet-
ter utilize the motion cue, the motion predicted by the Kalman filter is encoded together with
the appearance feature in order to produce a motion-aware feature. In order to identify the
association for a given object, we propose an object-customized search. Inspired by Cond-
Conv [24] and CondInst [16], our model learns a set of convolution kernels for searching the
given object in the current frame. The resultant convolution kernels are applied to the motion-
aware feature to generate a probability map indicating the spatial likelihood of locating the
given object in the current frame. To achieve good search results, dynamic convolution ker-
nels are expected to encode the query object’s characteristics, such as its appearance, relative
position, and shape. Despite that similar ideas have been explored in different contexts, our
main contribution is the overall framework for integrating them into the context of MOTS.
Experiments show that the proposed method outperforms competitive methods on popular
MOT and MOTS benchmarks, particularly in terms of association accuracy.

2 Related Work
Online trackers generally focus on either motion or appearance cues, with a greater focus on
the latter. Some attempts combine both cues, but they tend to do so in a simplistic manner.
Methods are divided into three categories based on how they utilize cues.
Motion Cues. SORT [3] uses the Kalman filter [7] to predict object motion and estimate the
future location of the tracklets. It then associates newly detected tracklets with the highest
IOU overlap using the Hungarian algorithm. Since SORT only utilizes motion cues, it can
achieve 260 fps inference speed and is effective in some scenarios. Given good detection
results and the high frame-rate input, IOU-Tracker [4] eliminates the motion prediction al-
gorithm and uses only the location of objects to compute overlap between the tracklets for
tracking. In more challenging situations, such as crowded scenes, these methods may fail
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due to the lack of information about the appearance of the objects. To address the prob-
lem, Deep SORT [20, 21] considers appearance features from a deep neural network and
associates objects using the object location overlap between frames.
Appearance Cues. Most trackers [18, 19, 26] extract the re-ID features from the regions
proposed by a detector. FairMOT [27] shows the advantage of the center-based re-ID meth-
ods. The re-ID feature similarity is computed between tracklets and detections to assign
the identities. CenterTrack [29] proposes a simultaneous detection and tracking algorithm
and links objects implicitly in adjacent frames using point-based object representations.
SiamMOT [13] formulates the Region Proposal Network and Siamese-based MOT trackers
and deals with the similarity of object appearance. These methods can handle challenging
cases such as identity losing and re-appearing. CCPNet [22] presents a data augmentation
strategy, continuous copy-paste, to deal with the limited number of instances in consecutive
raw frames. However, its training uses two external datasets, and others cannot train their
models using the augmentation strategy unless the pre-processed datasets become available.
Combination of both cues. In addition to appearance, FairMOT also takes into account
motion cues at the time of inference. After the model has been processed, it performs the
location prediction using motion cues. In a similar way to Deep SORT, FairMOT adds the
similarity of two parts with a handcrafted ratio as the new similarity. There are two draw-
backs to these methods. The first problem is that the combination ratio is fixed regardless
of the size, category, and density of objects in the scene. In addition, they consider the
appearance of an object and its motion as two separate sources of information.

Our approach integrates both appearance and motion cues in a more unified and learnable
manner. This results in more robust association results for different scenes, object classes,
and sizes, as they are adapted simultaneously. In our experiments, we found that the impor-
tance of motion differed when tracking cars and pedestrians. As a reasonable explanation, a
car’s motion is considered to be rigid body motion, whereas pedestrians’ motion is consid-
ered to be non-rigid body motion. Unlike the former, which is an overall body movement,
the latter is an articulated movement that is difficult to master.

3 SearchTrack
Our MOTS method, SearchTrack, is point-based and compatible with most point-based de-
tection methods. Our current implementation is built on the CenterNet detector [28], which
identifies objects by their center points. For segmentation, we adapt CondInst [16]. On top
of the point-based detector, we propose an object-customized search method to address the
object association problem. For better utilizing motion cues, the Kalman filter predicts object
position, which supplements the motion-aware feature.

Fig. 1 provides an overview of SearchTrack. Our method takes two images as input at a
time, and these two images need not be adjacent to each other in our training process. At time
t, an image of the current frame It and a previous frame It−δ are given. Since the previous
frame It−δ has already been processed, it contains instances with the information of tracked
identities, T t−δ = {bt−δ

1 , ...,bt−δ

i , ...}. Each detected object b = (p,m,w,θ , id) has attributes
including the center location p, the segmentation mask m, the detection confidence w, the
customized weights θ , and the unique identity id.

In the first step, both images It and It−δ go through the same backbone network to obtain
feature maps f t and f t−δ . The feature map f t of the current frame is then fed to the detection
and segmentation branch to produce a list of newly detected instances T̃ t (including bounding
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Figure 1: Overview of SearchTrack. A shared backbone network extracts features from
the current frame It and the previous frame It−δ . The extracted feature of It is fed into the
detection and segmentation branch for obtaining a set of candidate objects. It is also fed to
the search branch to form a search feature map Ft . For a query object bt−δ

i in the previous
frame, we obtain its customized weight θ

t−δ

i and predicted location mt
i from its Kalman filter.

The location mt
i is encoded in a motion map Ot

i . Combining Ot
i and Ft gives us the motion-

aware motion map F̃t
i . The customized weight θ

t−δ

i realized a customized searcher T for
the object bt−δ

i . By taking F̃t
i as input, T outputs a response map indicating where the object

could locate. Finally, a solver matches the boxes from the search branch and the candidate
objects from the detection and segmentation branch for resolving association among objects.

boxes and masks) without assigning identities. The core problem is to resolve the association
problem between T t−δ and T̃ t . For resolving this problem, the feature map f t is also fed to
the search branch for extracting a compact feature map Ft for later search.

For each detected object bt−δ

i in the previous frame, we aim to search its position at the
current frame. For better utilizing object motion, a Kalman filter is maintained separately for
each detected object. For the object bt−δ

i , its position at the current frame is predicted by the
associated Kalman filter. The position is then encoded as a motion map Ot

i . By concatenating
the motion map Ot

i with the feature map Ft , we obtain the motion-aware feature map F̃t
i for

the object bi and feed it into the dynamic searcher.
For the previous frame, its feature map f t−δ is fed to the controller branch to obtain

a feature map, called dynamic weight map θ t−δ . Each pixel of the map contains a vector
encoding a set of convolution weights customized for an object locating at that location, if
there is any. For the detected object bi, we obtain its customized weights θ

t−δ

i and feed it to
the dynamic searcher.

The dynamic searcher takes θ
t−δ

i and uses it to form a set of convolution kernels as
the search kernels for the object bi. With these convolution kernels, the dynamic searcher T
becomes a customized CNN for searching the object bi. By passing the motion-aware feature
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F̃t through T , we obtain a response map, in which each pixel value indicates the probability
that object bi appears at that pixel for the current frame. With the response map, we can find
the detected instance in T̃ t , which most likely corresponds to the object bi and thus resolve
the association problem.

3.1 Detection and Segmentation Branch
Our method is point-based. The detection results of region-based detectors may cause ambi-
guity during training since a single rectangular region could correspond to multiple identities
in a crowded scene. This shortcoming of region-based detectors was also noted by Fair-
MOT [27]. We have therefore decided to adopt a point-based approach and build our MOTS
architecture on top of a point-based detector, CenterNet [28] in the current implementation.
As the segmentation branch, we adapt dynamic convolution from CondInst [16].

The detection and segmentation branch takes as input a single image I ∈ RWI×HI×3 and
generates a detection representation set {(pj,sj)}N−1

j for each object class c ∈ {0, ...,C−1}.
The detection consists of two attributes: the center point p ∈R2 signifies the location of each
object, and the size s ∈ R2 gives the height and width of the object’s bounding box from
regression. Furthermore, the model also generates two low-resolution maps: the heat map
Y ∈ [0,1]W×H×C and the size map S ∈ [0,1]W×H×2, where W =WI/R and H = HI/R with the
downsampling ratio R = 4 in our implementation. Each center of the detected object will be
represented as local maximum p ∈R2 in the heat map Y along with the detection confidence
ω = Yp and the object size s = Sp, where Yp and Sp are the values of Y and S at the point p.
For segmentation, a segmentation mask is associated with each detected object.

3.2 Motion-aware Feature Map
As mentioned, a compact search feature map Ft ∈ RW×H×Csearch is generated by the search
branch connected to the backbone branch, which takes It as input. We empirically sets the
number of channels Csearch to 16 as it achieves a good balance between computation cost
and performance. To leverage object motion for tracking, we choose to use the Kalman filter
framework [3] as the motion model. We approximate the displacements between frames of
each object with a linear constant velocity model, independent of the motions of other objects
and the camera. For each object, a Kalman filter is maintained for predicting its locations
in the following frames. By using the Kalman filter to predict the center location mt

i of
the object bt−δ

i at time t, we can produce a motion map Ot
i ∈ RW×H×2 that contains offset

vectors from the position mt
i , Ot

i(p) = p−mt
i . By concatenating Ot

i and Ft , we obtain the
motion-aware feature map F̃t

i ∈RW×H×(Csearch+2) for the object bi. The motion map provides
a strong cue for predicting the object motion for the association and significantly improves
the performance, particularly for non-rigid bodies.

3.3 Dynamic Searcher
A core problem of multiple object tracking is to resolve association. SearchTrack addresses
this problem by performing object-customized searches through the dynamic search engine.
Given a detected instance bt−δ

i at time t − δ , its customized weights θ
t−δ

i is adopted as
convolution weights to search for the particular instance in frame It globally. Formally,

Rt
i = T (F̃t

i;θ
t−δ

i ), (1)
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Search Branch

Controller Branch

Figure 2: The search process for finding object association. Given the input image It and
a detected object bi at time t − δ , we obtain the feature map Ft from the search branch and
dynamic weight θ

t−δ

i from the controller branch. Note that both branches share the same
backbone for their first parts. Next, we generate the motion map Ot

i according to the Kalman
filter’s prediction for the object. We then integrate Ot

i and Ft to have the motion-aware
feature map F̃t

i for the object. The dynamic weight θ
t−δ

i is fed into the dynamic searcher
T to realize a customized searcher for the given object. By taking F̃t

i as input, T outputs
an association response map Rt

i for the object in the current frame. The peak of the map
indicates the center of the object bi in It .

where F̃t
i is the motion-aware feature map customized for the object bi and T is the learnable

fully convolutional network (FCN) tracker with parameters θ
t−δ

i . These parameters are the
dynamic weights generated by the controller head at the center of bt−δ

i . The output of this
network is a response map Rt

i ∈ [0,1]W×H that gives the association possibility of bi in It .
The supplementary document provides more details regarding the model architecture and the
number of parameters for the dynamic weight θ .

By finding the peak in the response map, we determine the location of bt
i and take the

peak value as the association confidence υ t
i . Note that the instance bt

i is not completed until
the bounding box size and segmentation branch is applied. In the case that the instance bt−δ

i
is visible in It , our tracker T should give a high confidence score at the location where bt

i is
located. Fig. 2 illustrates the association process in the overall model depicted in Fig. 1.

Fig. 3 gives an example of the response map. Given the objects in the previous frame and
the current frame, the searcher generates a response map corresponding to each object. The
green intensity value of each pixel indicates the probability that the object appears at that
pixel. The cyan points indicate the previous object centers, and the magenta points represent
the object center predicted by the Kalman Filter.

The procedure in Eq. (1) is applied multiple times, once for each detected object bt−δ

i .
Nevertheless, each frame only needs to pass through the backbone network one time, re-
sulting in a significant reduction in computation time. Without using many parameters, the
dynamic searcher shows that a compact FCN with dynamically-generated filters can outper-
form ROI-based trackers such as TrackR-CNN.
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Figure 3: The response maps from the dynamic searcher. (a) The tracking and segmen-
tation results from the previous frame at time t −1. (b) The current frame at time t. (c) The
response map for the object with ID 4 at time t. (d) The response map for the object with ID
2 at time t. There are two detected objects with ID 2 and 4 at frame t−1 as shown in (a). The
response map of a previously detected object indicates the likelihood that the object appears
at each pixel at time t. Taking the object with ID 4 as an example, the green intensity in the
response map (c) shows the corresponding likelihood of the object. The peak will be taken
as the detected position of the object. For (c) and (d), the cyan point indicates the object
center in the previous frame at time t − 1. The magenta point denotes the predicted object
center provided by the Kalman Filter at time t. For clarity, the relevant region is enlarged
and shown on the top-right corner.

3.4 Loss Function
The overall loss function of SearchTrack can be formulated as:

Ltotal = Lheatmap +Lmask +Lsearch, (2)

where Lmask is the loss of the CondInst segmentation branch; Lheatmap is the focal loss [8, 9]
defined in the CenterNet,

Lheatmap =
1
N ∑

xyc

{
(1−Yxyc)

α log(Yxyc) if Y ∗
xyc = 1

(1−Y ∗
xyc)

β (Yxyc)
α log(1−Yxyc) otherwise,

(3)

where Y ∈ [0,1]W×H×C is the output heatmap and Y ∗ ∈ [0,1]W×H×C is the ground-truth
heatmap corresponding to the objects. N is the number of objects, and α = 2 and β = 4
are hyperparameters of the focal loss.

We define the loss Lsearch as

Lsearch = ∑
i

L f ocal(T (F̃t
i;θ

t−δ

i ),R∗t
i) (4)

and L f ocal is a reduced version of Eq. (3) defined as:

L f ocal(R,R∗) = ∑
xy

{
(1−Rxy)

α log(Rxy) if R∗
xy = 1

(1−R∗
xy)

β (Rxy)
α log(1−Rxy) otherwise,

(5)

where R∗ ∈ [0,1]W×H is the ground truth response map corresponding to the objects. The
ground truth map is formed by rendering a Gaussian at the true center position. α = 2 and
β = 4 are hyperparmeters of the focal loss.

Citation
Citation
{Law and Deng} 2018

Citation
Citation
{Lin, Goyal, Girshick, He, and Doll{á}r} 2017



8 Z. TSAI ET AL.: SEARCHTRACK: MULTIPLE OBJECT TRACKING

Pedestrian Car
time HOTA↑ DetA↑ AssA↑ LocA↑ sMOTSA↑ HOTA↑ DetA↑ AssA↑ LocA↑ sMOTSA↑

TrackRCNN [18] 0.5 41.9 53.8 33.8 78.0 47.3 56.6 69.9 46.5 86.6 67.0
GMPHD_SAF [14] 0.08 49.3 65.5 38.3 83.8 62.9 55.1 77.0 39.8 88.7 75.4

PointTrack [23] 0.05 54.4 62.3 48.1 83.3 61.5 62.0 79.4 48.8 88.5 78.5
ReMOTS* [25] 3 58.8 68.0 52.4 84.2 66.0 71.6 78.3 66.0 89.3 75.9

Ours 0.19 57.6 63.7 53.1 80.9 60.6 71.5 76.8 67.1 88.0 74.9

Table 1: Comparison with leading 2D methods on the KITTI MOTS leaderboard.
“*” denotes offline methods. The “time” column reports inference time (in seconds) for a
single frame, which was reported by the authors. We compare the published leading online
2D methods and one offline 2D method on the leaderboard. Our method achieves the highest
HOTA score among all online 2D methods. Also, our association accuracy (AssA) outper-
forms all the compared methods. We highlight the best and the second best in each column.

Figure 4: Results of SearchTrack on KITTI MOTS. Tracking ids are coded in colors.

4 Experiments and Results
We evaluate the proposed tracker on both the MOT and MOTS tasks using a popular MOTS
benchmark, KITTI MOTS [18], and a popular MOT benchmark, MOT17 [11]. The pri-
mary evaluation metric is HOTA [6, 10], which is the primary metric in KITTI MOTS and
MOT17 for comparisons and ranking since 2021. Additionally, we consider other metrics
when appropriate, including sMOTSA, MOTA, IDF1, DetA, AssA, and LocA. The supple-
mentary document provides more details regarding the datasets and metrics.

4.1 Results
KITTI MOTS. Table 1 compares SearchTrack with some competitive methods on the KITTI
MOTS test set. In order to make a fair comparison, we only select the leading published 2D
methods since some of the leading methods on the leaderboard are 3D and utilize additional
information. The “time” column of Table 1 reports the average inference time (in seconds)
for each method on a single frame. As far as inference time is concerned, our method is also
competitive. Fig. 4 shows some visual results.

Our SearchTrack outperforms all the state-of-the-art online 2D methods in both pedes-
trian and car categories. Our method outperforms the state-of-the-art PointTrack method [23]
significantly: for the pedestrian class, our method provides 3.2% gain on HOTA and 5% gain
on AssA; and for the car class, our method provides 9.5% gain on HOTA and 18.3% gain
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Method HOTA↑ DetA↑ AssA↑ MOTA↑ IDF1↑ MT↑ ML↓ FP↓ FN↓ IDSW↓
Tracktor++ [2] 44.8 44.9 45.1 56.3 55.1 21.1% 35.3 % 8866 235449 1987

Visual-Spatial [1] 46.4 45.3 47.9 56.8 58.3 22.8% 37.4 % 11567 230645 1320
CenterTrack [29] 48.2 49.0 47.8 61.5 59.6 26.4% 31.9 % 14076 200672 2583

TMOH [15] 50.4 49.6 50.9 62.1 62.8 26.9% 31.4 % 10951 201195 1897
SiamMOT [13] - - - 65.9 63.3 34.6% 23.9% 18098 170955 3040

PermaTrack [17] 54.2 58.0 51.2 73.1 67.2 42.3% 19.1% 24557 123508 3571

Ours 53.4 55.6 51.6 68.0 65.7 39.1% 21.1% 25651 150786 4254

Table 2: Results on the MOT17 test set with public detection. We compare leading pub-
lished online methods on the leaderboard. The results show that SearchTrack achieves the
best association accuracy (AssA) among all the compared trackers. We highlight the best
and the second best in each column.

Figure 5: Results of SearchTrack on MOT17. Tracking ids are coded in colors.

on AssA. In addition to the online methods, SearchTrack achieves comparable performance
to the offline 2D method ReMOTS [25] (0.7 % gain for pedestrian and 1.1% gain for cars
on AssA) with a significant speed advantage (0.19s vs. 3s per frame). The results show
that our method has significantly improved object association for tracking with a reasonable
inference speed.
MOT17. Table 2 compares our method with the methods on the MOT17 leaderboard with
the public detection setting. The MOT17 public detection setting provides the detection re-
sults and mainly tests the tracker’s ability to associate objects for tracking. We use the public
detection configuration with the same setting as CenterTrack and pretrain on the CrowdHu-
man dataset [12]. For this comparison, although SearchTrack is 0.8 behind PermaTrack [17]
on HOTA, it provides the superior association accuracy performance as measured by AssA.
Our tracker is competitive with state-of-the-art methods on the MOT task. Fig. 5 shows some
tracking results on the MOT17 dataset.

4.2 Ablation Studies

We have conducted ablation studies to justify our main design choices in the proposed archi-
tecture, including the motion-aware feature and the segmentation branch. The experiments
are mainly performed on KITTI MOTS. The supplementary gives more ablation studies.
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Pedestrian Car
HOTA↑ DetA↑ AssA↑ HOTA↑ DetA↑ AssA↑

feature without motion 43.9 % 56.4 % 34.4 % 77.1 % 79.3 % 75.5 %
motion-aware feature 59.4 % 56.0 % 63.5 % 78.7 % 79.4 % 78.5 %

Table 3: Ablation study on the motion-aware feature using the KITTI MOTS validation
set. We evaluate the importance of encoding motion into the feature map for search. The
results show the motion information is important, especially for the pedestrian class. With
the motion-aware feature, the association accuracy (AssA) and HOTA are significantly im-
proved, especially for non-rigid pedestrians.

Pedestrian Car
HOTA↑ DetA↑ AssA↑ LocA↑ HOTA↑ DetA↑ AssA↑ LocA↑

w/o segmentation 55.9 % 55.5 % 56.4 % 82.2 % 73.9 % 73.7 % 74.3 % 87.3 %
w/ segmentation 58.2 % 56.8 % 59.8 % 83.8 % 74.5 % 73.3 % 76.0 % 87.6 %

Table 4: Impact of the segmentation branch on tracking using the KITTI MOTS vali-
dation set. By jointly training with the segmentation task, the tracking performance can be
improved. Furthermore, because the backbone is shared for these tasks, the knowledge of
foreground and background also benefits the tracking task.

Motion-aware feature. Table 3 compares the feature maps with and without encoding mo-
tion information on the KITTI MOTS validation set. The feature map without motion in-
formation only takes appearance cues into account. Its association performance is weak,
especially for the pedestrian class. It shows that using only appearance cues is often insuffi-
cient for a non-rigid body such as a pedestrian. The motion-aware feature map significantly
boosts the association accuracy for the pedestrian class.
The segmentation branch. To investigate the synergy between tracking and segmentation,
we experiment with training with and without the segmentation branch. For analysis, we
evaluate in bounding box level on KITTI MOTS and train from scratch, avoiding the im-
pacts from the pre-trained model. Table 4 shows that tracking performance is significantly
improved for most evaluation metrics when augmenting the segmentation branch into archi-
tecture. The results validate that tracking can benefit from the dense pixelwise annotations
and better separation of foreground and background. Note that we do not enable the segmen-
tation branch in our architecture when performing the MOT task.

5 Conclusion
This paper proposes an online point-based tracker named SearchTrack that simultaneously
considers object appearance and motion cues to address the MOTS problem. To resolve
the association problem, SearchTrack employs an object-customized search network. Also,
by maintaining a Kalman filter for each object, we encode the predicted location into the
motion-aware feature map as the input to the customized searcher. SearchTrack outperforms
the state-of-the-art online 2D methods on the KITTI MOTS benchmark. Additionally, our
method outperforms previous methods in terms of association accuracy on the MOT bench-
mark. As far as we know, SearchTrack is the first one-stage point-based MOTS framework.
Moreover, it is efficient, straightforward, and more accurate than the state-of-the-art meth-
ods.
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