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Supplementary Material A: Implementation Details

Network Architecture

Using the DownUpNet architecture, the quality of semantic predictions as a result of different
sampling schemes is tested. A schematic overview of the network architecture is shown in
Figure 2. There are three choices for down-sampling operations:

• Convolution with stride 2 and kernel size 3. This operations introduces C2 ×K2 addi-
tional parameters per down-sampling layer, where C is the number of channels of the
layer and K the kernel size.

• Max Pool with a non-overlapping kernel of size 2 at stride 2.
• Generalised Morphological Pooling, with variable kernel size. The pooling operation

can be flat (similar to max pooling) or be parameterized with any structuring element.
In the case of parabolic structuring elements, this layer introduces C parameters. And
in the freely parameterized case, this introduced C×K2 parameters.

There are three choices for up-sampling operations:
• Sparse up-sampling at rate 2, followed by bilinear interpolation and convolution. This

operation introduces C2 ×K2 additional parameters per up-sampling layer.
• Unpooling followed by deconvolution as introduced in [3] and used in [1]. This oper-

ation introduces C2 ×K2 additional parameters per up-sampling layer.
• Morphological unpooling as described in Section 3.2, which unpools by provenance

followed by a morphological dilation. In case of a flat structuring element, this is a
parameterless layer. In case of parabolic parameterisation, this introduces C parame-
ters. And in the case of a freely parameterized dilation, this layer introduces C×K2

additional parameters.
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Note especially that morphological pooling and unpooling (i.e. MorphPool) introduce hardly
any additional parameters. Even the general (i.e. freely) parameterised dilations introduce a
factor C (i.e. the number of channels) fewer parameters than full convolutions in the other
sampling operations do.

In the network, all convolutions have a kernel size of 3, and are padded to retain resolution.
When training on 2D-3D-S, there are two convolution blocks (including batch normalisa-
tion and ReLU non-linearity) before and after each sampling operation. This is because the
2D-3D-S is much larger than NYUv2 and SUN-RGBD and initial experimentation showed
significantly improved performance of this architecture using a larger network for all meth-
ods.

Training details
All methods are implemented in PyTorch, with the exception of the morphological operations
which are implemented as C++/CUDA extensions. The extensions are compiled using g++
and CUDA11. All networks are trained using SGD with Nesterov Momentum [2], with a
learning rate that decays exponentially by a scalar γ . Based on initial experimentation, for
consistent performance this γ can be set such that the initial learning rate λ decays to at 2%

of the initial λ , according to γ = epochs
√

2
100 with epochs the number of training epochs, and

epochs ≥ 1.

RGB images are normalised with training set statistics to follow a zero-mean Gaussian, as is
common for neural networks. Depth images however are not normalised, and are unscaled
depth values in meters. Depth data in general has more sensor noise and infilling artefacts.
In combination with the unscaled data, this led to less stable learning at similar λ to RGB
images. Therefore, networks trained with depth input start with a learning rat λ = 5e−4,
whereas RGB input starts with λ = 5e−3.

During training, random crops of size 384×384 are used for NYUv2 and SUN-RGBD, crops
of 512× 512 are used for 2D-3D-S. During testing, centre crops are used as close to full
resolution as possible, while retaining a resolution that is divisible by 25. Networks are
trained for 100 epochs on NYUv2 and SUN-RGBD with a batch size of 8; on 2D-3D-S
networks are trained for 40 epochs with a batch size of 16. The experiments can be run on
a NVIDIA GTX1080Ti, except the experiments on 2D-3D-S which is trained on a NVIDIA
A6000.

Supplementary Material B: Supporting Results
In this section, all supporting results for the main experiments section are given. All results
are reported over a variety of tables. For semantic segmentation on Depth, see Table 1 for
2D-3D-S, Table 2 for SUN-RGBD, and Table 3 for NYUv2. For semantic segmentation on
RGB, see Table 4 for 2D-3D-S, Table 5 for SUN-RGBD, and Table 6 for NYUv2. And
finally, for depth auto-encoding, see Table 7.

Additionally, depth-wise convolutions can be used to equalise the number of parameters
available to networks making use of morphological and linear sampling. On top of the
results on depth data for SUN-RGBD in the main text, results are listed for depth input on
NYU in Table 8, and for RGB input in Table 9 and Table 10. In general, for networks with
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Table 1: 2D-3D-S Segmentation on Depth Results. The first column denotes the sampling
method, the second through fourth column denotes the kernel size with which the Pooling,
Unpooling, and Convolution scheme worked. For each method of post-processing (None,
Convolution, Deconvolution) the up-sampled feature volume, the number of parameters and
performance is given. The high-lighted gray cells denote the standard procedures for up and
down-sampling: Unpooling followed by (de)convolution, bilinear interpolation followed by
convolution. In addition, General MorphPool denotes general parameterised morphological
structuring elements. The bold-faced results indicate best performance per column.

None Conv Deconv
P U C #params mIoU acc bf #params mIoU acc bf #params mIoU acc bf

Linear 3 - 3 12.6M 0.403 0.693 0.426 25.1M 0.413 0.699 0.434 25.1M 0.410 0.692 0.430
Standard Pool 2 3 3 0 0.352 0.657 0.375 12.6M 0.377 0.675 0.393 12.6M 0.397 0.693 0.407

MorphPool 2 3 3 0 0.385 0.682 0.441 12.6M 0.399 0.688 0.449 12.6M 0.410 0.694 0.454
MorphPool 3 5 3 0 0.425 0.707 0.476 12.6M 0.428 0.714 0.479 12.6M 0.442 0.720 0.487
Para. MorphPool 3 5 3 4.0K 0.429 0.711 0.472 12.6M 0.445 0.719 0.487 12.6M 0.433 0.710 0.484
General MorphPool 3 5 3 67.5K 0.425 0.710 0.473 12.6M 0.445 0.722 0.488 12.6M 0.450 0.724 0.492

Table 2: SUN-RGBD Segmentation on Depth Results. Results indicate morphological
pooling and unpooling have improved performance over standard pooling and unpooling
by a large margin. In addition, because of the non-linear nature of depth, morphological
operations for down and up-sampling also beat the linear baseline with only half of the
parameters.

None Conv Deconv
P U C #params mIoU acc bf #params mIoU acc bf #params mIoU acc bf

Linear 3 - 3 12.6M 0.349 0.711 0.308 25.1M 0.398 0.741 0.339 25.1M 0.399 0.742 0.334
Standard Pool 2 3 3 0 0.208 0.643 0.255 12.6M 0.297 0.687 0.294 12.6M 0.288 0.690 0.294

MorphPool 2 3 3 0 0.345 0.712 0.328 12.6M 0.375 0.735 0.345 12.6M 0.375 0.732 0.347
MorphPool 3 5 3 0 0.382 0.735 0.346 12.6M 0.412 0.748 0.364 12.6M 0.407 0.747 0.361
Para. MorphPool 3 5 3 4.0K 0.396 0.741 0.351 12.6M 0.412 0.751 0.362 12.6M 0.414 0.750 0.366
General MorphPool 3 5 3 67.5K 0.398 0.745 0.352 12.6M 0.416 0.748 0.366 12.6M 0.416 0.748 0.365

Table 3: NYUv2 Segmentation on Depth Results. Results on 2D-3D-S and SUN-RGBD
are confirmed by the results on NYUv2. This is unsurprising: NYUv2 is a subset of the
larger SUN-RGBD dataset. The quality of inpainting the NYUv2 depth maps is much better
than other images in the SUN-RGBD dataset, since other subsets had much sparser depth
data.

None Conv Deconv
P U C #params mIoU acc bf #params mIoU acc bf #params mIoU acc bf

Linear 3 - 3 12.6M 0.305 0.597 0.175 25.1M 0.320 0.609 0.176 25.1M 0.312 0.603 0.176
Standard Pool 2 3 3 0 0.121 0.453 0.177 12.6M 0.159 0.495 0.173 12.6M 0.151 0.487 0.176

MorphPool 2 3 3 0 0.290 0.592 0.201 12.6M 0.316 0.608 0.211 12.6M 0.318 0.613 0.207
MorphPool 3 5 3 0 0.323 0.607 0.200 12.6M 0.357 0.627 0.208 12.6M 0.360 0.630 0.212
Para. MorphPool 3 5 3 4.0K 0.348 0.627 0.205 12.6M 0.360 0.630 0.212 12.6M 0.367 0.630 0.215
General MorphPool 3 5 3 67.5K 0.353 0.632 0.207 12.6M 0.357 0.630 0.207 12.6M 0.377 0.643 0.219
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Table 4: 2D-3D-S Segmentation on RGB Results. Similar to the segmentation results on
depth, regular pooling and unpooling, even followed by (de)convolution, yields inferior per-
formance to this paper’s generalised morphological pooling. Linear interpolation, however,
performs on par worse than morphological operations. This could be due to the RGB im-
ages, which cannot necessarily be expected to suit a set of morphological operations. Again,
morphological operations introduce no or little additional parameters, whereas linear sam-
pling plus convolution does. Finally, morphological pooling & unpooling performs best at
semantic boundaries as measured by the Boundary F1-score.

None Conv Deconv
P U C #params mIoU acc bf #params mIoU acc bf #params mIoU acc bf

Linear 3 - 3 12.6M 0.355 0.637 0.289 25.1M 0.370 0.649 0.301 25.1M 0.372 0.650 0.302
Standard Pool 2 3 3 0 0.325 0.607 0.257 12.6M 0.338 0.623 0.266 12.6M 0.345 0.625 0.271

MorphPool 2 3 3 0 0.344 0.632 0.299 12.6M 0.351 0.631 0.296 12.6M 0.362 0.638 0.305
MorphPool 3 5 3 0 0.365 0.648 0.316 12.6M 0.361 0.648 0.314 12.6M 0.356 0.642 0.313
Para. MorphPool 3 5 3 4.0K 0.362 0.642 0.317 12.6M 0.354 0.642 0.308 12.6M 0.365 0.649 0.313
General MorphPool 3 5 3 67.5K 0.351 0.638 0.310 12.6M 0.364 0.650 0.315 12.6M 0.364 0.646 0.312

Table 5: SUN-RGBD Segmentation on RGB Results. SUN-RGBD shows similar results
to 2D-3D-S on RGB input. In this table, parameterising the structuring elements by either
parabolic or general structuring elements is also shown.

None Conv Deconv
P U C #params mIoU acc bf #params mIoU acc bf #params mIoU acc bf

Linear 3 - 3 12.6M 0.381 0.694 0.314 25.1M 0.396 0.707 0.329 25.1M 0.398 0.709 0.329
Standard Pool 2 3 3 0 0.298 0.646 0.270 12.6M 0.351 0.682 0.312 12.6M 0.353 0.682 0.310

MorphPool 2 3 3 0 0.348 0.675 0.330 12.6M 0.368 0.697 0.346 12.6M 0.381 0.699 0.349
MorphPool 3 5 3 0 0.387 0.695 0.334 12.6M 0.363 0.701 0.342 12.6M 0.379 0.705 0.344
Para. MorphPool 3 5 3 4.0K 0.383 0.695 0.335 12.6M 0.382 0.701 0.346 12.6M 0.387 0.706 0.349
General MorphPool 3 5 3 67.5K 0.388 0.698 0.337 12.6M 0.394 0.704 0.352 12.6M 0.390 0.707 0.346

Table 6: NYUv2 Segmentation on RGB Results. Similar to 2D-3D-S and SUN-RGBD on
image input, results show that (a) morphological pooling outperforms standard pooling; (b)
morphological pooling performs on par or slightly better than linear sampling, although at
much reduced parameter count; and (c) morphological operations perform better at semantic
boundaries.

None Conv Deconv
P U C #params mIoU acc bf #params mIoU acc bf #params mIoU acc bf

Linear 3 - 3 12.6M 0.321 0.578 0.191 25.1M 0.339 0.595 0.194 25.1M 0.338 0.597 0.194
Standard Pool 2 3 3 0 0.193 0.514 0.198 12.6M 0.281 0.555 0.234 12.6M 0.271 0.556 0.229

MorphPool 2 3 3 0 0.295 0.550 0.219 12.6M 0.316 0.574 0.227 12.6M 0.314 0.577 0.223
MorphPool 3 5 3 0 0.312 0.584 0.203 12.6M 0.335 0.599 0.213 12.6M 0.330 0.591 0.210
Para. MorphPool 3 5 3 4.0K 0.309 0.571 0.193 12.6M 0.328 0.588 0.209 12.6M 0.325 0.582 0.206
General MorphPool 3 5 3 67.5K 0.327 0.586 0.211 12.6M 0.326 0.593 0.208 12.6M 0.322 0.587 0.210
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Table 7: NYUv2 Depth Auto-encoding Results. Similar to semantic segmentation on depth,
morphological operations are well suited to sampling features from a Depth modality. Mor-
phological pooling & unpooling outperform linear sampling and standard pooling on this
task. Parameterising the morphological operations with a free kernel yields best perfor-
mance.

None Conv Deconv
P U C ARD RMS acc < 1.25 ABS RMS acc<1.25 ARD RMS acc<1.25

↓ ↓ ↑ ↓ ↓ ↑ ↓ ↓ ↑
Linear 3 - 3 0.193 0.563 0.715 0.190 0.566 0.716 0.199 0.594 0.703
Standard Pool 2 3 3 0.239 0.751 0.605 0.224 0.687 0.634 0.225 0.695 0.633

MorphPool 2 3 3 0.180 0.526 0.733 0.166 0.496 0.774 0.180 0.523 0.738
MorphPool 3 5 3 0.177 0.534 0.734 0.169 0.495 0.760 0.174 0.508 0.749
General MorphPool 3 5 3 0.171 0.505 0.747 0.161 0.462 0.774 0.171 0.510 0.753

Table 8: Depth-wise Convolution Results for Depth on NYU. Similar to in the main text,
it is possible to use depth-wise convolutions to equalise the number of parameters available
during up-sampling. Gray cells indicate networks that have the same number of available
parameters to learn interpolation for up-sampling, either morphologically or linearly. Just
like on SUN-RGBD, MorphPool outperforms the linear setting on NYU.

Down
Up None Depth-wise Conv Conv

#params mIoU acc bf #params mIoU acc bf #params mIoU acc bf

Conv 12576576 0.305 0.597 0.175 12626176 0.323 0.613 0.177 47494976 0.362 0.631 0.189
Depth-wise Conv 17856 0.283 0.583 0.163 67456 0.300 0.596 0.167 34936256 0.314 0.607 0.176
Standard Pool 0 0.121 0.453 0.177 49600 0.149 0.480 0.173 34918400 0.204 0.543 0.198

MorphPool 0 0.323 0.607 0.200 49600 0.367 0.637 0.211 34918400 0.361 0.627 0.213
Para. MorphPool 3968 0.348 0.627 0.205 53568 0.366 0.640 0.205 34922368 0.379 0.637 0.214
General MorphPool 67456 0.353 0.632 0.207 117056 0.359 0.633 0.205 34985856 0.380 0.643 0.217

the same number of parameters MorphPool outperforms its linear counterpart. Again, the
effect is most pronounced for depth data.

Table 9: Depth-wise Convolution Results for RGB on SUN-RGB. Similar to the exper-
iments that compare depth and RGB input, the difference in performance between pooling
methods is less pronounced. However, MorphPool outperforms the linear network with the
same number of parameters.

Down
Up None Depth-wise Conv Conv

#params mIoU acc bf #params mIoU acc bf #params mIoU acc bf

Linear 12576576 0.381 0.694 0.314 12626176 0.418 0.726 0.346 47494976 0.353 0.717 0.325
Depth-wise Linear 17856 0.368 0.684 0.301 67456 0.383 0.706 0.326 34936256 0.393 0.705 0.321
Standard Pool 0 0.298 0.646 0.270 49600 0.376 0.696 0.319 34918400 0.382 0.701 0.333

MorphPool 0 0.387 0.695 0.334 49600 0.418 0.720 0.364 34918400 0.395 0.714 0.354
Para. MorphPool 3968 0.383 0.695 0.335 53568 0.417 0.722 0.364 34922368 0.397 0.715 0.353
General MorphPool 67456 0.388 0.698 0.337 117056 0.419 0.723 0.365 34985856 0.392 0.713 0.348
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Table 10: Depth-wise Convolution Results for RGB on NYU. Again, MorphPool outper-
forms the linear setting at the same number of parameters.

Down
Up None Depth-wise Conv Conv

#params mIoU acc bf #params mIoU acc bf #params mIoU acc bf

Conv 12576576 0.321 0.578 0.191 12626176 0.344 0.519 0.201 47494976 0.351 0.607 0.196
Depth-wise Conv 17856 0.299 0.561 0.180 67456 0.310 0.568 0.189 34936256 0.322 0.579 0.181
Standard Pool 0 0.193 0.514 0.198 49600 0.275 0.565 0.222 34918400 0.310 0.577 0.236

MorphPool 0 0.312 0.584 0.203 49600 0.332 0.594 0.227 34918400 0.317 0.583 0.192
Para. MorphPool 3968 0.309 0.571 0.193 53568 0.333 0.594 0.226 34922368 0.331 0.588 0.203
General MorphPool 67456 0.327 0.586 0.211 117056 0.344 0.604 0.232 34985856 0.336 0.594 0.207
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