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Abstract

Recent years have witnessed the advancement of video super-resolution (VSR) with
elaborately-designed multi-frame alignment and space-time fusion/refinement techniques.
However, both techniques require heavy computational burden and memory consump-
tion, hindering existing VSR networks from being deployed on resource-constrained
platforms (e.g., smartphones and wearable devices). In this paper, we propose an ef-
ficient and lightweight VSR network with two special designs. First, we propose a novel
motion propagation scheme which propagates difference flows for efficient feature align-
ment. The difference flow is sparse and computational-friendly which focuses on texture
details. After estimating the preliminary difference flow with an initial motion estimator,
we then design an adaptive motion modification module for frame-pair wise adaptation
through bidirectional propagation. Second, a dense feature distillation module is de-
signed for further refining the aligned features efficiently. Thanks to both designs, our
network achieves comparable performance with state-of-the-art VSR methods while en-
joying a clear advantage in model size and computational efficiency.

1 Introduction
Video super-resolution (VSR) aims to generate a high-resolution (HR) video from its cor-
responding low-resolution (LR) observation. HR videos are desired in various applications,
such as video surveillance, high-definition television and video streaming. Recently, deep
learning based method have demonstrated promising performance for VSR [3, 5, 15, 19, 22,
32, 36, 42], and the state-of-the-art methods outperform traditional methods [2, 8, 21] with
notable gains. Such performance boost is obtained by various complex temporal modeling
techniques, i.e., implicit/explicit multi-frame alignment and space-time fusion/refinement,
which hinder the deployment of VSR networks on resource-constrained platforms, e.g.,
smartphones and wearable devices.

To reduce the required computational cost and memory consumption, we argue that,
designing efficient alignment and multi-frame fusion/refinement schemes are the keys to
lightweight VSR networks.
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(a) Alignment (b) Fusion/refinement and reconstruction

Figure 1: Complexity analysis (GFLOPs) of typical VSR networks (i.e., EDVR [36] and
BasicVSR [3]). The value of GFLOPs is calculated on super-resolving a video clip of spatial
resolution 128×256 with the scale factor equal to 4. (a) Comparison between different multi-
frame alignment schemes. (b) Comparison between different feature fusion/refinement and
reconstruction schemes. Note that, due to different network designs, the computation cost of
feature fusion/refinement and reconstruction are summed for a fair comparison.

(1) Alignment. A core step in VSR is to align different frames, either explicitly or
implicitly. It is especially worth mentioning that, as an advanced solution for VSR, Ba-
sicVSR [3] utilizes the pretrained SpyNet [28] for optical flow estimation first and then
warps each frame feature bidirectionally for explicit alignment. However, estimating optical
flow itself is time-consuming and introduces extra parameters (e.g., Spynet introduces 1.4M
parameters). Furthermore, as can be seen in Fig. 1(a), with the increased number of input
frames, the computational cost in terms of GFLOPs grows linearly, indicating an explicit
alignment scheme is not affordable in resource-constrained applications. To avoid explicitly
calculating optical flow, some recent methods exploit the motion information in an implicit
manner. For example, EDVR [36] utilizes the pyramid, cascading and deformable (PCD)
alignment module for multi-frame alignment and shows superior performance under large
motions due to the flexible receptive fields. However, such implicit scheme still suffers from
heavy computational cost, as shown in Fig. 1(a).

(2) Fusion/refinement. Another resource-consuming part comes from the deep stacked
backbones, among which residual blocks play an important role in the feature fusion/refinement
and reconstruction processes. For example, BasicVSR [3] fuses the aligned features with 30
residual blocks that consists of 60 convolutional layers, and EDVR [36] utilizes 40 residual
blocks in the reconstruction process that costs over 4,000 GFLOPs to generate a 5-frame
clip, as can be seen in Fig. 1(b).

Therefore, more efficient alignment methods as well as lighter fusion/refinement struc-
tures are desired to enable efficient VSR in resource-constrained applications. In this paper,
we attempt to reduce computational cost and model size from the aforementioned two as-
pects and propose a novel network for efficient VSR. For the former part, we propose a
motion propagation scheme which is different from existing methods. With an initial mo-
tion estimator, our network estimates motion fields only in the beginning and the end of
an input sequence, which gets rid of dense flow estimation per frame pair. The estimated
preliminary "difference flows" are then propagated along the whole sequence in a bidirec-
tional manner, which are modified at each timestep through an adaptive motion modification
module to fit motion changes. Instead of estimating optical flow with extra pretrained net-
works, our motion estimation is based on the temporal difference, which is lightweight and
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efficient compared with previous methods [3, 40] (see Fig. 1(a)). On the other hand, the
residual feature distillation block (RFDB) originally proposed in [23] is extended to a dense
alternative for effective feature refinement in each propagating branch. The proposed dense
feature distillation (DFD) module can efficiently refines the warped features by distilling
useful channels over distilled features without deep stacked structures (see Fig. 1(b)).

The contributions of this paper are summarized as follows. (1) A novel motion propaga-
tion scheme is proposed for efficient feature alignment, which estimates preliminary motion
fields called "difference flow" and modifies them per frame pair adaptively. (2) A dense
alternative of RFDB is designed to distill and refine warped features without deep stacked
structures, which maintains the efficiency and effectiveness of the network. (3) Experimental
results demonstrate that the proposed network achieves comparable performance with state-
of-the-art VSR methods on two benchmark datasets Vid4 and Vimeo90K-T while enjoying
a clear advantage in model size and computational efficiency.

2 Related Work

Single Image Super-Resolution. Single image super-resolution (SISR) research has been
flourishing since its first attempt on deep learning [7]. The performance of SR results keep
reaching new peaks through deeper networks [14, 20, 31], attention mechanisms [41, 43]
and vision Transformers [18]. Advanced augmentation techniques are also proposed which
further boost current methods [35]. However, deeper structures as well as fancy but complex
modules inevitably bring computational burdens. Therefore, designing lightweight and ef-
ficient networks becomes a promising topic in SISR [12, 23, 26, 39]. For example, Hui et
al. [12] devise a lightweight information multi-distillation block for hierarchical feature ex-
traction and adaptive fusion, followed by the contrast-aware channel attention mechanism to
emphasize important features. Liu et al. [23] use a simple convolutional layer to replace the
channel splitting operation and propose the RFDB to save the inference time. In this paper,
motivated by [23], we propose a dense alternative of RFDB, which further distills useful
features for feature refinement.
Video Super-Resolution. VSR advances SISR by exploiting additional information from
neighboring low-resolution frames. Most VSR methods embed additional optical flow esti-
mation networks to calculate accurate pixel-wise dense motion field in order to align multiple
frames [3, 19, 29, 37, 38, 40]. For example, Chan et al. [3] align multiple adjacent frames
in the feature level using the pretrained SpyNet [28] and propose a bidirectional network for
long-term temporal modeling. To avoid explicitly calculating the optical flow, some methods
exploit the motion information in an implicit manner, among which the deformable convo-
lution [6] receives much attention due to its flexible receptive field and is utilized to align
frames in the feature domain in VSR [32, 36]. However, even though the unstable training
phenomenon is alleviated by [4], heavy computational burdens are still hard to overcome.
Different from existing VSR methods, our proposed network does not need extra parameters
(i.e., pretrained flow estimation network) for motion estimation. With an initial motion esti-
mator, the estimated difference flows are propagated along the whole sequence for efficient
feature alignment.
Temporal Difference for Motion Modeling. Being widely used in video action recognition
tasks, temporal difference serves as an efficient and effective motion estimation operator [24,
33, 34]. However, its potential in VSR has rarely been explored. Recently, Isobe et al. [13]
utilize explicit image level difference in both LR and HR spaces for motion modeling. In
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Figure 2: An overview of the proposed network. (a) shows the bidirectional propagation of
motions and features by our method. B, F and R denote the backward cell, the forward cell
and the reconstruction module. Input frames of the forward cells are substituted by ellipsis
for clearer illustration, which are the same as backward cells. (b) shows the details of the
forward and backward cells, which include an adaptive motion modification (AMM) module
and a dense feature distillation (DFD) module. dF/B

t denotes the motion (forward/backward
difference flow) propagated at time step t. f F/B

t denotes the feature propagated at time step
t. The motion propagated from the next/previous time step is modified by the AMM module
for feature warping and the warped feature is then refined by the DFD module.

contrast, our method combines image level and feature level differences to estimate and
propagate sparse difference flows, which requires little extra computation.

3 Method

3.1 Overview
Given an LR sequence

{
ILR
t

}N
t=1 consisting of N frames, where ILR

t ∈ R3×H×W , VSR aims

to recover its HR counterpart
{

ISR
t
}N

t=1, which should be close to the ground truth
{

IHR
t

}N
t=1,

where ISR/HR
t ∈R3×sH×sW . H, W and s denote the height, width and the scale factor, respec-

tively. The overall pipeline of our method is shown in Fig. 2.
Different from sliding window-based methods (e.g., EDVR [36]), we follow a typical

bidirectional propagation scheme [3] to propagate both features and estimated difference
flows. Specifically, we design an Initial Motion Estimator (IME) to obtain a preliminary
forward (backward) flow using the first (last) two frames of the input sequence. Then the es-
timated bidirectional preliminary flows are propagated and modified by the Adaptive Motion
Modification (AMM) module for frame-pair wise adaptation in each time step. For a given
time step t, the reference frame ILR

t utilizes the modified flow for feature alignment through
the warping operation. Afterwards, the aligned features are fed into the Dense Feature Dis-
tillation (DFD) module for further refinement. Finally, the upsampled reference frame is
obtained by passing several convolutional layers and the pixel-shuffle [30] operation, which
follows the design of BasicVSR [3].
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3.2 Propagating Difference Flows

Existing VSR methods deal with multi-frame alignment by using either a pretrained flow
estimation network followed by the warping operation [3] or learnable offsets in the fea-
ture domain (i.e., deformable convolution [36] and attention map [1]). Unlike the above
two alignment schemes that require large computational cost, we propose to propagate the
motion estimated at the beginning (end) of the input sequence for efficient multi-frame align-
ment. Our motion propagation scheme consists of two modules: the IME module and the
AMM module. Without loss of generality, we take the backward branch as an example in
this subsection and the forward branch can be similarly derived. Note that the forward cell
includes an extra concatenation operation.
Initial Motion Estimator (IME). The main motivation of flow propagation here is to avoid
dense motion prediction between each frame pair. Intuitively, assuming continuous motion
between video frames, we can obtain a rough motion estimation in the current time step
based on its counterpart in the last time step. We first estimate the motion between the last
two frames. As shown in Fig. 3(a), we first extract differences at both image and feature
levels. Here we use a shared convolutional layer to extract features of input frames for
feature level difference calculation. Then, we concatenate the original input frames to utilize
frame wise temporal information. To take advantage of long-range spatial dependencies, we
further use the Large Kernel Attention (LKA) [9] to enlarge the receptive field of the above
three parts for fine-grained motion estimation. Finally, the output of LKA layers are fused
to form the preliminary motion field dB

N−1 of the backward branch. This process can be
formulated as

dB
N−1 = F(Concat(ϕ1(ri

N,N−1),ϕ2(r
f
N,N−1),ϕ3( fN,N−1))), (1)

where ri
N,N−1, r f

N,N−1 denotes the image and feature level differences of the N-th (the last)
frame and its predecessor frame, respectively. fN,N−1 denotes frame features of the last
two frames. ϕ j(.)( j = 1,2,3) and F(.) stand for the LKA layer and the fusion operation,
respectively.
Adaptive Motion Modification (AMM). After estimating the preliminary motion in both
the forward and the backward directions, we need to modify the motion in each time step
for adaptive motion modeling. Concerning about the complexity, we devise a simple module
based on image level difference to tailor frame-pair wise motion information, as can be
seen in Fig. 3(b). The motion estimated from the next time step is first concatenated with
the image level difference between the current reference frame ILR

t and its successor ILR
t+1,

following by the stacked 1× 1 and 3× 3 convolutional layers for channel-wise and spatial-
wise adaptation. Formally, we can derive the modified motion as

dB
t = φ(Concat(dB

t+1,r
i
t+1,t)), (2)

where φ(.) denotes the stacked 1× 1 and 3× 3 convolutional layers. We call the estimated
and propagated motion field "difference flow", which benefits from the difference operation.
Detailed analysis of the difference flow is shown in Sec. 4.3. After obtaining the modi-
fied flow, a warping operation is conducted for feature alignment, as can be seen in Fig. 2.
The aligned features are fed into the DFD module for further refinement and fusion in a
computational-friendly manner.
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Figure 3: Details of the core modules (backward propagation as an example). (a) The IME
module which utilizes image and feature level residual to estimate the preliminary differ-
ence flow. LKA denotes the large kernel attention layer [9]. (b) The AMM module which
adaptively modifies difference flow propagated from the adjacent time step. (c) The DFD
module which uses 1x1 convolutions to densely impose further distillation. RFDB denotes
the residual feature distillation block [23].

3.3 Dense Feature Distillation (DFD)
Most existing VSR methods select deep stacked residual blocks as the backbone network
(e.g., at least 30 residual blocks, which include over 60 3× 3 convolutional layers), which
demonstrate promising results due to the residual connections [11] and deep architecture.
Naturally, deeper structures introduce heavy computational burdens, which may not be af-
fordable for resource-constrained platforms.

Recently, channel splitting (CS) operation has been widely adopted in efficient SISR [12,
23]. By dividing the input features into a retained one and a coarser one, redundant com-
putation on useless features is saved. Furthermore, cascaded CS operations distill the input
features step by step, gradually generating compact representations. As an efficient alterna-
tive, RFDB replaces the CS operation with 1×1 convolutional layers which greatly reduces
the inference time. Inspired by the efficient design [23], we attempt to use the RFDB as the
backbone for feature refinement. However, directly stacking multiple RFDBs shows infe-
rior performance as can be seen in Table 3. To address the above issue, we design a dense
alternative of the RFDB, i.e., the DFD module, as can be seen in Fig. 3(c). Instead of sequen-
tially stacking RFDBs to deepen the network, we use 1×1 convolutional layers by densely
connecting them with the RFDB layers to further distill useful features. Then the further
distilled features are concatenated along the channel dimension and fused by an additional
1× 1 convolutional layer. In this way, the input feature benefits from a more complete dis-
tillation process with multiple interactions among the outputs of intermediate RFDBs. The
effectiveness of the DFD module is demonstrated in Sec. 4.3.

3.4 Training Objective
We impose two loss terms to supervise both intermediate motion fields and the final recon-
struction results, named LM and LR, respectively. For the reconstruction loss, we choose

Citation
Citation
{Guo, Lu, Liu, Cheng, and Hu} 2022

Citation
Citation
{Liu, Tang, and Wu} 2020{}

Citation
Citation
{He, Zhang, Ren, and Sun} 2016

Citation
Citation
{Hui, Gao, Yang, and Wang} 2019

Citation
Citation
{Liu, Tang, and Wu} 2020{}

Citation
Citation
{Liu, Tang, and Wu} 2020{}



R GAO, Z XIAO, Z XIONG: PROPAGATING DIFFERENCE FLOWS FOR EFFICIENT VSR 7

Charbonnier loss [17], which handles outliers much better than the conventional L1 penalty

LR(IHR, ISR) =
N

∑
i=1

√∥∥IHR
i − ISR

i

∥∥2
+ ε2. (3)

As for intermediate motion constraint, we impose the warping loss in both forward and
backward branches, which uses estimated motion fields to warp input LR frames and aligns
them with their neighboring frames. Then, the Charbonnier loss is utilized again on the
warped LR images and the original ones. This process can be formulated as follows

LM(ILR,dF ,dB) = λ1 ∑
F
LR(W(ILR,dF), ILR)+λ2 ∑

B
LR(W(ILR,dB), ILR), (4)

where W refers to the warping operation, F and B are denoted as the forward and backward
processes. Frame indexes are omitted here for clarity. We empirically set the weights λ1 and
λ2 as 0.5. Then the total loss is the sum of the above two terms

LTotal = LM +LR. (5)

4 Experiments
4.1 Experimental Settings
We test on 4× SR with the bicubic downsampling degradation. Vimeo90K [40] is used as our
training dataset. Vid4 [21] and Vimeo90K-T [40] are used as test datasets. We choose Peak
Signal-to-Noise Ratio (PSNR) and Structural Similarity Index Measure (SSIM) to evaluate
reconstruction quality. We use the sequence flipping strategy as in [3] to train our network
on 14 input frames using the Adam [16] optimizer (β1 = 0.9, β2 = 0.99). Random hori-
zontal flipping as well as rotation are also used for training data augmentation. The Cosine
Annealing scheme [25] is adopted and the initial learning rate is set to 2e-4. We set the
batch size to 8 and the patch size to 64×64. Our network is trained for 200K iterations and
finetuned using L2 loss for another 200K iterations to improve the overall performance. All
the experiments are conducted using PyTorch [27] on NVIDIA RTX 3090 GPUs.

Methods Params (M) GFLOPs Vid4 Vimeo90K-T
Bicubic - - 23.78/0.6347 31.32/0.8684

RBPN [10] 12.2 28230.68 27.12/0.8180 37.07/0.9435
EDVR [36] 20.6 2296.50 27.35/0.8264 37.61/0.9489

BasicVSR [3] 6.3 417.82 27.24/0.8251 37.18/0.9450
IconVSR [3] 8.7 579.36 27.39/0.8279 37.47/0.9476
PFNL [42] 3.0 1067.72 26.73/0.8029 36.14/0.9363

EDVR-M [36] 3.3 526.59 27.10/0.8186 37.09/0.9446
BasicVSR-M 3.2 209.46 26.97/0.8145 36.65/0.9404

Ours 3.0 221.15 27.26/0.8230 36.95/0.9428

Table 1: Quantitative results on Vid4 and Vimeo90K-T. Red and blue colors indicate
the best and the second-best efficiency/performance of lightweight models, respectively.
PSNR/SSIM are calculated on the Y channel. GFLOPs are computed for generating an
HR frame with resolution 512×1024.
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Figure 4: Qualitative results on exemplar scenes of Vid4 (top) and Vimeo90K-T (bottom).

4.2 Comparisons with State-of-the-Art Methods
We compare our network with seven state-of-the-art methods which can be categorized into
heavy and lightweight on two widely used benchmarks: Vid4 and Vimeo90K-T. The quanti-
tative results are summarized in Table 1. The performance of most methods is obtained from
their original papers for fair comparisons. Note that we decrease the model size of BasicVSR
and train a lighter variant BasicVSR-M, which has similar model complexity to ours.

We first compare our method with lightweight models (∼ 3M), including PFNL [42],
EDVR-M [36], and BasicVSR-M [3]. As shown in Table 1, our method performs best
against the above models on Vid4 with competitive computation cost. For example, we
achieve 0.16dB PSNR gain with less than a half GFLOPs compared with EDVR-M, and
0.29dB gain with similar GFLOPs compared with BasicVSR-M. As for Vimeo90K-T, our
method outperforms PFNL and BasicVSR-M by 0.81dB and 0.30dB, respectively. When
comparing with heavy models such as EDVR, our method has a performance drop but enjoys
much superior efficiency on generating multiple frames, as shown in Fig. 1. This advantage
enables our method to process longer video sequences with less computational cost, which
is essential in resource-constrained applications. We also show some qualitative results on
Vid4 and Vimeo90K-T. In the top of Fig. 4, our network is able to produce clearer structures
of the stripe pattern compared with other models. In the meantime, as can be seen in the
bottom of Fig. 4, our network successfully recovers the grid pattern on the collar, whereas
BasicVSR-M and EDVR-M generate severe twists.

4.3 Model Analysis
In order to get deeper insights into the flow propagation scheme, we first visualize the dif-
ference flow to make a comparison with the optical flow. We then perform several ablation
studies on the core modules in our network on Vid4.
Difference Flow Visualization. To explore the behavior of difference flows, we visualize
them from two perspectives. Note that we choose forward flows of both optical flow and
difference flow as an example. As shown in the top of Fig. 5, we first compare with op-
tical flow generated by the pretrained SpyNet. Unlike the dense optical flows, the learned
difference flows are task-specific, which focus on texture details due to image and feature
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Figure 5: Visualization of difference flows. Top: Comparison between optical flow (oF
t ) and

difference flow (dF
t ). Bottom: Difference flows generated on consecutive frames.

Method PSNR
IME w/o image residual 27.13
IME w/o feature residual 27.12

AMM w/ concat 27.10
w/o AMM 27.16

Spynet 27.20
Ours 27.26

Table 2: Ablation on IME and AMM modules.

Method #Blocks PSNR Params GFLOPs
Resblock 15 27.26 2.94M 249.04
RFDB 8 27.15 2.94M 223.14
DFD(Ours) 6 27.26 2.95M 221.15

Table 3: Comparison of different feature re-
finement structures. GFLOPs are computed
for generating an 512×1024 output frame.

level differences. Both optical flows and difference flows share similar directions, indicating
the capability to represent motion information of the latter. On the other hand, we visual-
ize consecutive difference flows in the bottom of Fig. 5. As the flow propagates through
time, it becomes sparser but adaptively keeps in specific region where motion changes. This
property makes it possible for efficient alignment without estimating pixel-wise dense flows,
which gets rid of extra computation.
Ablation Studies. We perform ablation studies on Vid4 to evaluate the effectiveness of IME,
AMM, and DFD modules. To verify the importance of image/feature level residual which
serves as motion priors, we discard the image/feature level residual in the IME module. As
shown in Table 2, 0.13/0.14dB PSNR drop is observed, which demonstrates the effectiveness
of residual information on motion modeling. As for the AMM module, we set three alterna-
tives compared to the original design: (1) AMM w/concat: we directly concatenate two ad-
jacent frames without calculating their frame residual. (2) w/o AMM: we remove the AMM
module but keep the IME module. (3) SpyNet: we directly use the pretrained SpyNet to esti-
mate dense optical flows for warping. Being adaptively propagated and modified, difference
flows serve as alternative motion cues, making our method outperforms other variants. For
evaluating the DFD module, we keep the network structure and training settings but replace
the DFD module with stacked residual blocks or sequential RFDBs, respectively. From Ta-
ble 3 we can see that, while achieving similar performance to stacked residual blocks, DFD
costs less computation with shallower design. On the other hand, simply stacking RFDBs
leads to 0.11dB PSNR drop, which validates the effectiveness of the DFD module.
Tradeoff between lighter variants. We additionally train different variants of our method
by changing the number of channels and the complexity of DFD (40c6b refers to 40 channels
and DFD module with 6 RFDBs), resulting in a PSNR-GFLOPs curve in Fig. 6. With the
increase of GFLOPs, the performance keeps growing steadily. Note that there is a significant
improvement between 1.8M and 2.3M variants, which indicates that finer distillation process
contributes to better results.
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1.3M

1.8M
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Figure 6: PSNR-GFLOPs tradeoff of our method between lighter variants. We also include
several efficient methods for comparison.

5 Conclusion

In this paper, we propose a lightweight and efficient network for VSR. Different from ex-
isting VSR methods requiring huge computational cost during multi-frame alignment, we
propose a novel motion propagation scheme to propagate the estimated bidirectional dif-
ference flow for efficient alignment in the feature domain. On the other hand, we replace
commonly used deep stacked residual blocks with an efficient alternative of the residual
feature distillation block, which enables multiple interactions among the distilled features.
Experimental results on two benchmark datasets demonstrate that our network has compa-
rable performance with several state-of-the-art methods while enjoying a clear advantage in
resource-constrained applications.
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