Propagating Difference Flows for Efficient Video Super-Resolution

Ruisheng Gao Zeyu Xiao Zhiwei Xiong

Visual Information Discovery And Recovery

Motivation

• Various complex temporal modeling techniques in existing VSR methods hinder the deployment of VSR networks on resourceconstrained platforms, e.g., smartphones and wearable devices.

• To reduce the required computational cost and memory consumption, we argue that, designing efficient alignment and multi-frame fusion/refinement schemes are the keys to lightweight VSR networks.

Contribution

 A novel motion propagation scheme is proposed for efficient feature alignment, which estimates preliminary motion fields called <u>"difference flow"</u> and modifies them per frame pair adaptively. A dense alternative of RFDB is designed to distill and refine warped features <u>without deep stacked structures</u>, which maintains the efficiency and effectiveness of the network.

• The proposed network achieves comparable performance with state of-the-art VSR methods on two benchmark datasets Vid4 and Vimeo90K-T while *enjoying a clear advantage in model size and computational efficiency*.

Methods

Bidirectional recurrent arch to propagate difference flows

Quantitative results

Methods	Params (M)	GFLOPs	Vid4	Vimeo90K-T	
Bicubic	-	-	23.78/0.6347	31.32/0.8684	
RBPN [10]	12.2	28230.68	27.12/0.8180	37.07/0.9435	
EDVR [36]	20.6	2296.50	27.35/0.8264	37.61/0.9489	
BasicVSR [3]	6.3	417.82	27.24/0.8251	37.18/0.9450	
IconVSR [3]	8.7	579.36	27.39/0.8279	37.47/0.9476	
PFNL [42]	3.0	1067.72	26.73/0.8029	36.14/0.9363	
EDVR-M [36]	3.3	526.59	27.10/0.8186	37.09/0.9446	
BasicVSR-M	3.2	209.46	26.97/0.8145	36.65/0.9404	
Ours	3.0	221.15	27.26/0.8230	36.95/0.9428	

Details of components

Visual results

Ablation studies

Alignment	Feature refinement							
Method	PSNR	Method	#Blocks	PSNR	Params	GFLOPs		
IMF w/o image residual	27.13	Resblock	15	27.26	2.94M	249.04		
INIL w/o image residual	27.15	RFDB	8	27.15	2.94M	223.14		
IME w/o feature residual	27.12	DFD(Ours)	6	27.26	2.95M	221.15		
AMM w/ concat	27.10							
w/o AMM	27.16	GFLOPs are computed for generating						
Spynet	27.20	an 512×1024 output frame.						
Ours	27.26							

Visualize difference flows

