
JIN ET AL.: ONE-POT MULTI-FRAME DENOISING 1

One-Pot Multi-Frame Denoising

Lujia Jin123

jinlujia@pku.edu.cn

Shi Zhao4

magishe@pku.edu.cn

Lei Zhu123

zhulei@stu.pku.edu.cn

Qian Chen123

chen_qian@stu.pku.edu.cn

Yanye Lu�235

yanye.lu@pku.edu.cn

1 Department of Biomedical Engineering,
Peking University, Beijing, China

2 Institute of Medical Technology,
Peking University, Beijing, China

3 Institute of Biomedical Engineering,
Peking University Shenzhen Graduate
School, Shenzhen, China

4 School of Physics,
Peking University, Beijing, China

5 National Biomedical Imaging Center,
Peking University, Beijing, China

Abstract

The performance of learning-based denoising largely depends on clean supervision.
However, it is difficult to obtain clean images in many scenes. On the contrary, the
capture of multiple noisy frames for the same field of view is available and often nat-
ural in real life. Therefore, it is necessary to avoid the restriction of clean labels and
make full use of noisy data for model training. So we propose an unsupervised learn-
ing strategy named one-pot denoising (OPD) for multi-frame images. OPD is the first
proposed unsupervised multi-frame denoising (MFD) method. Different from the tradi-
tional supervision schemes including both supervised Noise2Clean (N2C) and unsuper-
vised Noise2Noise (N2N), OPD executes mutual supervision among all of the multiple
frames, which gives learning more diversity of supervision and allows models to mine
deeper into the correlation among frames. N2N has also been proved to be actually a
simplified case of the proposed OPD. From the perspectives of data allocation and loss
function, two specific implementations, random coupling (RC) and alienation loss (AL),
are respectively provided to accomplish OPD during model training. In practice, our ex-
periments demonstrate that OPD behaves as the SOTA unsupervised denoising method
and is comparable to supervised N2C methods for synthetic Gaussian and Poisson noise,
and real-world optical coherence tomography (OCT) speckle noise.

1 Introduction
Due to the non-definite nature of image denoising, it is always difficult for methods based on
reasoning to perform as well as expected on a lot of scenes. The turning milestone appears
in the rise of deep learning, which greatly develops image denoising and meanwhile ignites
the need for data. Convolutional neural networks (CNN) with various structures and charac-
teristics have been designed [1, 14, 25, 39, 48]. They do not care about the causal inference
of noise pattern but learn end-to-end from the noise image to its clean counterpart. However,
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Figure 1: Comparison between our OPD and other supervision strategies, including super-
vised N2C and unsupervised N2N. The OPD establishes mutual supervision among multiple
frames, which allows the hidden clean image to be better estimated.

clean images are difficult to obtain, making conventional learning under Noise2Clean (N2C)
almost impossible to proceed. Noise2Noise (N2N)[26] overcomes this obstacle at the cost
of one more noisy image. The noisy-clean image pair is replaced by the two paired noisy
images to train the model under the N2N strategy.

Although it is hard to get a clean image in real-life scenes, in many cases the acquisition
of multi-frame noisy images is available and even natural, such as exposure bracketing[3],
astrophotography[13], and optical coherence tomography (OCT)[34], etc. Denoising for
these scenes is called multi-frame denoising (MFD), which aims at finding a mapping fff with
a given multi-frame dataset

{(
xxxi +nnn j

i ,yyyi

)
|i ∈ [1,N] , j ∈ [1,m]

}
such that fff

[⋃
j∈[1,m] (xxxi+

nnn j
i

)]
= yyyi, i ∈ [1,N]. As can be seen from the above problem statement, MFD is essentially

a reasonable fusion of multiple noisy frames corresponding to the same underlying clean ref-
erence. All previous MFD methods[29, 31, 44] are supervised methods. For the first time,
we propose an unsupervised strategy, one-pot denoising (OPD), to achieve high-quality de-
noising of multiple frames. As demonstrated in Fig. 1, OPD strives to extend the supervision
from noisy-clean pairs to a group of all noisy frames corresponding to the same clean target.
Specifically, we design a data allocation method that continuously shuffles the supervision
pair from multiple frames during training so that the information contained in each frame
could be fully utilized. This implementation is named OPD-random coupling (OPD-RC).
In addition, we construct an alienation loss function, which has an equivalent denoising
effect to OPD-RC and provide a more formulaic and therefore more intuitive understand-
ing for the OPD strategy. This implementation is named OPD-alienation loss (OPD-AL).
Both implementations of OPD are experimented on additive white Gaussian noise (AWGN),
signal-dependent Poisson noise, and OCT speckle noise. Experimental results on all three
noises show that, both qualitatively and quantitatively, OPD performs better than N2N and
sometimes outperforms N2C.

In a nutshell, the main contributions of our work are as follows:

1. We propose OPD, a denoising strategy based on an unprecedented mutual supervision
paradigm. OPD is the first proposed unsupervised MFD method.

2. From the perspectives of data allocation and loss function, two specific implementa-
tions, OPD-RC and OPD-AL are presented for MFD. We also reveal that the well-
known N2N[26] can be interpreted as a simplified case of our OPD.
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3. Experiments show that our OPD behaves as the SOTA unsupervised denoising method
and is comparable to supervised N2C methods for several MFD tasks, including de-
noising AWGN and Poisson noise, and OCT speckle noise reduction.

2 Related Works
2.1 Multi-frame Denoising

Compared to single-image denoising (SID), MFD has received significantly less attention in
the past decade. Tico[40] first migrated the popular Non-Local Means (NLM)[5] from single
image denoising to MFD. This method compares the similarity of blocks not only within but
also among frames. V-BM3D[22] and V-BM4D[27, 28] are based on the famous BM3D[9]
to denoise videos through sparse 3D transform-domain collaborative filtering. Buades et
al. [7] provided a complex processing chain including accurate registration and noise esti-
mation. Hasinoff et al.[16] applied an FFT-based alignment algorithm and a hybrid 2D/3D
Wiener filter to burst denoising, which had been built atop Android’s Camera2 API. Com-
pletely different from the aforementioned block-based fusion methods, accumulation after
registration (AAR)[6] directly uses weighted averaging to fuse multiple frames, which is
proved to be effective in zero-mean noise reduction.

All of the above are non-learning methods, while learning-based methods are rarer. Go-
dard et al.[12] constructed a simple but effective recurrent neural network inspired by se-
ries data processing. Mildenhall et al.[31] proposed a kernel prediction network (KPN) to
produce clean images from bursts by unique 3D denoising kernels. Marinc et al.[29] used
multi-scale kernels to extend KPN to multi-KPN (MKPN). Furthermore, Xia et al.[44] de-
veloped a basis prediction network (BPN) for effective burst denoising with large kernels,
which achieves both significant quality improvement and faster run-time.

2.2 Supervision Strategies for Image Denoising

Most learning-based image denoising methods follow the conventional N2C supervision
paradigm[1, 14, 25, 39, 48], which makes it indispensable to obtain clean images as la-
bels. N2N[26] breaks this limitation by exploring an alternative supervision paradigm, in
which pairs of noisy images corresponding to a common unknown clean target are used for
training. Wu et al.[43] showed that the results of optimization are equivalent under N2N
and N2C as long as the amount of data is large enough. AltN2N[8] improves the perfor-
mance of N2N under limited data by fine tuning. In the past two years, N2N has been
widely used in low dose computed tomography[15], positron emmision tomography[19],
synthetic aperture rader[10] and other image denoising tasks. Speech denoising[20], video
enhancement[4, 46], nanochennel measurement[38] and other non-image denoising has also
excellently proceeded under N2N.

Going further than N2N, self-supervised strategies denoise with only a single noisy im-
age, and they can be divided into two categories. The first category of methods utilizes
priori noise models as an external aid to construct another noisy image and pairs it with
the provided data for further N2N learning. Noiser2Noise[32] and Noise-as-Clean[45] are
representative methods in this category. These methods are strictly limited by prior noise
knowledge. The second category of methods does not require any additional knowledge.
Methods based on mask prediction, such as DIP[41], Noise2Void (N2V)[23], Noise2Self
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(N2S)[2] and blind-splot network[24], are typical representatives of this category, but their
denoising performance is inferior to the aforementioned prior knowledge-assisted methods.

3 Methods

In this Section, we first retrospect and formulate three conventional strategies for MFD as
preliminaries for subsequent method development (Sec. 3.1). Then the principle of our OPD
and two specific implementations, OPD-RC and OPD-AL, are introduced (Sec. 3.2). Finally,
we compare OPD with other strategies to reasonably analyze their pros and cons (Sec. 3.3).

3.1 Retrospecting Conventional MFD

MFD aims to learn the underlying clean target xxxi based on the multiple noisy images X :{
xxxi +nnn j

i | i ∈ [1,N] , j ∈ [1,m]
}

, where N denotes the number of samples and m refers to the
number of noisy frames per sample.

From the perspective of supervision strategies, there are mainly three existing strategies
for MFD: AAR[6], N2C and N2N[26], which are described in detail as follows.
AAR for MFD: As one of the most classical methods, AAR[6] is a simple but effective
algorithm. After registering all frames corresponding to the same sample, a clean xxxi can be
estimated simply by accumulating and averaging as:

x̂xxi =
1
m

m

∑
j=1

(xxxi +nnn j
i ), i = 1,2, ...,N (1)

N2C for MFD: Learning-based methods improve the generalization potential. Based on the
clean estimation of AAR, a set of training pairs TN2C :

{
(xxxi +nnn j

i , x̂xxi) | i ∈ [1,N] , j ∈ [1,m]}
can be built and N2C learning can be performed with the loss:

LN2C =
1

N ×m

N

∑
i=1

m

∑
j=1

∥∥∥ fΘΘΘ(xxxi +nnn j
i )− x̂xxi

∥∥∥2

2
, (2)

where L2 error is used by default in our derivation.
N2N for MFD: Among the strategies that help models escape the constraints of clean su-
pervision, N2N is the most representative. Find a random permutation Ii of the sequence
I= [1,2, ...,m] for each i ∈ [1,N]. Ji and Ki are two sequences obtained by equally dividing
Ii, which means that Ji and Ki constitute a random uniform partition of I. Note that when
m is odd, randomly discard an element in I. Treat the elements in Ji and Ki, i ∈ [1,N] as
indexes of frames and equally divide the multi-frame data into two parts:

X1 :
{

xxxi +nnn j
i | i ∈ [1,N] , j ∈ Ji

}
X2 :

{
xxxi +nnnk

i | i ∈ [1,N] , k ∈Ki

} (3)

where it should be noted that j and k are just the elements in Ji and Ki but not the indexes.
Then the elements in X1 and X2 can be paired one-to-one to construct the training set

TN2N and N2N learning can be performed with the loss:
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LN2N =
1

N ×
⌊m

2

⌋ N

∑
i=1

∑
j ∈ Ji

k ∈Ki

∥∥∥ fΘΘΘ(xxxi +nnn j
i )− (xxxi +nnnk

i )
∥∥∥2

2
,

s.t. idx( j) = idx(k),

(4)

where idx( j) and idx(k) represent the corresponding indexes of j and k in Ji and Ki.

3.2 One-Pot Multi-Frame Denoising
In Eq. (4), two ways can be found to use a pair of noisy images, which are employing one
to supervise the other and vice versa. Based on this consideration, we propose a concept of
"mutual supervision". As shown by the bidirectional arrow in Fig. 1, the roles of the two
noisy images participating in the training under mutual supervision are not absolutely pre-
scribed, but interchanged, entangled and equivalent. Furthermore, for multi-frame scenarios
with m > 2, mutual supervision can be established among all noisy images corresponding to
the same xxxi. The learning strategy based on the above concept is evocatively named OPD.
OPD enables each noisy image to play an equally important role. Diversified samples and la-
bels enable the model to squeeze out much more hidden inter-frame information contained in
the data during learning. At the same time, this also makes the model face more optimization
possibilities, which potentially leads to an improvement in denoising performance.

The most intuitive way to perform OPD is to go through all the one-to-one unidirectional
supervision pairs. Nevertheless, it is easy to realize that skyrocketing data size makes this
way so crude. Considering that the learnable models usually look for the minimum in an
iterative manner on the hypersurface defined by the loss function, from the perspectives of
reconstruction of the iterative data pairs and reconstruction of the loss function, we propose
two feasible OPD implementation methods, OPD-RC and OPD-AL, respectively.
OPD-RC: Since the data is fed into the model iteratively during training, we can simply
shuffle the multiple frames each time before a new iteration to continuously reconstruct the
supervision direction. Assuming that s refers to a step during model updating, before the sth
iteration, construct random and uniform partition Js

i and Ks
i of the sequence I= [1,2, ...,m].

Then randomly divide the m noisy frames corresponding to a same xxxi into two sets:

Xs
1 :

{
xxxi +nnn j

i |i ∈ [1,N] , j ∈ Js
i ,s ∈ N∗

}
Xs

2 :
{

xxxi +nnnk
i |i ∈ [1,N] ,k ∈Ks

i ,s ∈ N∗
} (5)

According to the back-propagation rule, the model at step s+1 can be updated as:

ΘΘΘs+1 = ΘΘΘs −η
∂

∂ΘΘΘ

[ NB

∑
i=1

∑
j ∈ Js

i
k ∈Ks

i

∥∥∥ fΘΘΘ(xxxi +nnn j
i )− (xxxi +nnnk

i )
∥∥∥2

2

]
,

s.t. idx( j) = idx(k),

(6)

where ΘΘΘs is the parameters at the sth step, η means the learning rate and NB is the batch size.
js
l and ks

l are the indexes of the input and the label randomly coupled before the sth step.
OPD-RC makes each of the m noisy frames appear in each iteration with equal proba-

bility and serve as input or label with the same chance. This operation greatly extends the
diversity of data pairing and supervision without any more training time consumption. As
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m noisy images
{𝑰𝑰 + 𝒏𝒏𝟏𝟏, 𝑰𝑰 + 𝒏𝒏𝟐𝟐, … , 𝑰𝑰 + 𝒏𝒏𝒎𝒎}
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·
·
·
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)

(𝑰𝑰 + 𝒏𝒏𝟐𝟐, 𝑰𝑰 + 𝒏𝒏𝒎𝒎
𝟐𝟐+𝟐𝟐

)

·
·
·

(𝑰𝑰 + 𝒏𝒏𝒎𝒎
𝟐𝟐

, 𝑰𝑰 + 𝒏𝒏𝒎𝒎)

(𝑰𝑰 + 𝒏𝒏𝒊𝒊, 𝑰𝑰 + 𝒏𝒏𝒋𝒋)

repeat m times

forward propagation

back-propagation

data distribution and pairing

Data Allocator
(N2C)

Training Process

random samplingData Allocator
(N2N)

Data Allocator
(OPD-RC) Legend

Figure 2: The workflows of the proposed OPD-RC and other denoising strategies including
N2C and N2N. The upper part presents the common workflow to train a learning-based
model. The data allocator represented by the gold box is the key difference between OPD-RC
and other strategies, which are shown in detail in the three small sub-figures at the bottom.

long as the training process goes through enough iterations, it is reasonable to think that the
multi-frame images are evenly used and the mutual supervision among them has been estab-
lished in a practical sense. Furthermore, OPD-RC does not affect the choice and design of
the network architecture and loss function. Fig. 2 shows the general principle of OPD-RC
and its comparison with N2C and N2N. The data pairing way in the data allocator is the key
difference between OPD-RC and other supervision strategies, as shown in the lower part of
Fig. 2.
OPD-AL: In order to make the m noisy frames corresponding to an xxxi play a full and bal-
anced role during training, the second averaging operation in Eq. (2) can be moved to fΘΘΘ(·):

LC
OPD =

1
NB

NB

∑
i=1

∥∥∥ 1
m

m

∑
j=1

fΘΘΘ(xxxi +nnn j
i )− x̂xxi

∥∥∥2

2
, (7)

where the superscript C of LC
OPD indicates that this loss is still under clean supervision.

According to the polynomial theorem, reorganize LC
OPD:

LC
OPD =

1
NB

NB

∑
i=1

[
1
m

m

∑
j=1

∥∥∥yyy j
i − x̂xxi

∥∥∥2

2
− 1

m2

m−1

∑
j=1

m

∑
k= j+1

∥∥∥yyy j
i − yyyk

i

∥∥∥2

2

]
, (8)

where fΘΘΘ(xxxi + nnn j
i ) and fΘΘΘ(xxxi + nnnk

i ) are replaced by yyy j
i and yyyk

i in writing, respectively. The
specific derivation from Eq. (7) to Eq. (8) is provided in Supplementary Material (S.M).

Use mean square error (MSE) and mean square alienation (MSA) to replace the two
items included in the first summation in Eq. (8):

LC
OPD =

1
NB

NB

∑
i=1

[
(LC

MSE)i − (LMSA)i
]

(9)
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Since Wu et al.[43] have proved the equivalence of convergence with clean or noisy
labels, replace x̂xxi with its corresponding noisy frames, we can finally get the OPD loss:

LOPD =
1

NB

NB

∑
i=1

[
(LN

MSE)i − (LMSA)i

]
, (10)

where (LN
MSE)i and (LMSA)i are respectively formulated as:

(LN
MSE)i =

1
m(m−1)

m

∑
j=1

m

∑
k = 1,
k ̸= j

∥∥∥yyy j
i − (xxxi +nnnk

i )
∥∥∥2

2

(LMSA)i =
1

m2

m−1

∑
j=1

m

∑
k= j+1

∥∥∥yyy j
i − yyyk

i

∥∥∥2

2

(11)

So far, OPD loss has been successfully constructed. The key constraint on inter-frame
mutual supervision is the LMSA term, which rewards the inter-frame alienation mined by the
model. When m equals to 2, Eq. (11) is reduced to the loss of N2N superimposed with
mutual supervision. This shows that the proposed OPD is a generalized form of N2N.

3.3 OPD vs. other Supervision Strategies
OPD vs. AAR: As a learning-based strategy, OPD has no restrictions on the physical pattern
of noise. However, AAR can only denoise images with zero-mean signal-independent noise.
Compared with OPD, AAR is not suitable for generalization, since numerous frames under
the same view are required when denoising on new data.
OPD vs. N2C: As an unsupervised strategy, OPD does not require any clean images as
labels, which is not the case for N2C. In addition, N2C regards m noisy frames corresponding
to the same clean target as independent samples, whereas OPD regards them as a whole for
more global consideration and more comprehensive mining.
OPD vs. N2N: Compared with OPD, N2N does not fully utilize multi-frame data. Pairwise
matching in m frames and roles for input and label are both determined arbitrarily before
training. It is easy to realize that the m noisy images corresponding to each xxxi are equally
valuable and should play an equal role, which is exactly what OPD achieves.

4 Experiments
Our OPD is experimented in three typical scenarios: synthetic Gaussian and Poisson noise,
and OCT speckle noise. Representatives of non-learning (e.g. NLM[5], BM3D[9]), super-
vised (e.g. N2C, KPN[31]) and unsupervised (e.g. N2N[26], N2S[2]) denoising methods
participate in the comparison, including single-image and multi-frame algorithms. All the
quantitative evaluation results in this paper are statistically significant. More results are pre-
sented in S.M, and high-resolution versions of Fig. 3 and Fig. 4 are also provided in S.M.

4.1 Settings
Datasets: For synthetic noise, the clean data comes from 50,000 images in the ImageNet
[36] validation set, which are cropped into 256×256. We randomly add AWGN with σ = 25
or Poisson noise with λ = 30 to the images and the frame number is set to 8. The same
process is implemented on BSD300[30], KODAK1 and SET14[47] to build testing sets.

1http://r0k.us/graphics/kodak/

http://r0k.us/graphics/kodak/
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Ground truth

Input N2C (U-Net)

N2V

OPD-RC

OPD-AL

NLM BM3D V-BM3D V-BM4D DnCNN

KPN MKPN BPN N2N (U-Net) N2S

Input

Ground truth

N2C (U-Net)

N2V

OPD-RC

OPD-AL

NLM BM3D V-BM3D V-BM4D DnCNN

KPN MKPN BPN N2N (U-Net) N2S

Additive White Gaussian Noise (𝝈𝝈 = 𝟐𝟐𝟐𝟐)

Signal-dependent Poisson Noise (𝛌𝛌 = 𝟑𝟑𝟑𝟑)

Figure 3: Example results of denoising synthetic noise. The results of different categories of
methods are framed with different colored boxes. The categories are listed in Tab. 1.

For OCT speckle noise reduction, the data comes from PKU37[11]. Due to the inconsistent
number of frames, we only use 16 frames per sample to align frame numbers among different
samples, which means our experiments use only one-third the amount of PKU37.
Implementation Details: Considering the training efficiency, a modified U-Net[18, 35] was
chosen to be the demonstrative model for N2C, N2N, OPD-RC and OPD-AL (See S.M for
network architecture). He’s method[17] was used for initialization. Adam[21] was used for
parameter optimization with L2 loss. In all experiments, one-tenth of the data was randomly
split from the training set to be validation set. All our experiments were conducted based on
PyTorch[33]. Six NVIDIA RTX 3090 graphical cards each with 24GB memory were used.
The hyperparameters for each experiment were different, which could be found in S.M. Peak
signal-to-noise ratio (PSNR), structural similarity (SSIM)[42], and root-mean-square error
(RMSE) were used as evaluation metrics to quantify the performance of involved methods.

4.2 Denoising Synthetic Noise

The average quantitative evaluation for the three testing sets with either Gaussian or Poisson
noise are shown in Tab. 1. Fig. 3 shows example results. Numerous representative methods
are involved in the comparison. According to the supervision scheme, they are divided into
non-learning, supervised and unsupervised methods. According to the image scene, they are
divided into single-image methods and multi-frame methods. Next, we compare and analyze
OPD and other methods of various categories.
OPD vs. other Unsupervised Methods: Both quantitative and qualitative results show
that the proposed OPD achieves SOTA among all unsupervised methods. As can be seen
from Tab. 1, for Gaussian noise, compared with N2N, the PSNR of OPD-AL is improved by
0.88dB, the SSIM is improved by 0.020, and the RMSE is decreased by 0.009. Similar boosts
also occur on OPD-RC and for Poisson noise. Small changes in metrics show big changes
in visual perception. Fig. 3 shows that both OPD algorithms preserve high-frequency details
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Table 1: The quantitative evaluation results of denoising synthetic noise and OCT speckle
noise. For each scenario, the globally highest and second highest results are denoted as red
and blue, respectively. Locally for unsupervised methods, the highest and the second highest
results are labeled with double underline and

:::::
wave

::::::::
underline, respectively.

Category Method
Gaussian Poisson OCT

PSNR SSIM RMSE PSNR SSIM RMSE PSNR SSIM RMSE
Input 22.72 0.505 0.074 21.20 0.469 0.088 20.35 0.513 0.096

no
n-

le
ar

ni
ng

single-
image

NLM[5] 24.92 0.670 0.059 24.96 0.676 0.058 26.36 0.600 0.048
BM3D[9] 25.63 0.774 0.055 23.82 0.684 0.066 26.67 0.612 0.047

multi-
frame

V-BM3D[22] 27.50 0.801 0.051 25.56 0.707 0.062 27.62 0.623 0.044
V-BM4D[27] 27.86 0.811 0.051 25.79 0.711 0.062 27.87 0.630 0.043

su
pe

rv
is

ed

single-
image

N2C 28.04 0.798 0.041 27.92 0.781 0.041 29.79 0.898 0.033
DnCNN[48] 29.01 0.827 0.036 28.39 0.814 0.039 28.84 0.871 0.036

multi-
frame

KPN[31] 32.31 0.917 0.025 32.28 0.916 0.025 26.68 0.582 0.047
MKPN[29] 32.67 0.924 0.024 32.43 0.923 0.025 28.68 0.592 0.037
BPN[44] 33.84 0.942 0.021 33.11 0.936 0.023 29.00 0.602 0.036

un
su

pe
rv

is
ed single-

image

N2N[26] 27.48 0.787 0.048 27.28 0.775 0.044 28.07 0.817 0.040
N2S[2] 26.88 0.780 0.049 27.11 0.760 0.045 22.23 0.523 0.089

N2V[23] 26.29 0.772 0.050 26.95 0.721 0.046 21.90 0.518 0.091
multi-
frame

OPD-RC
:::::::::::
28.15

::::::::::::
0.805

::::::::::::
0.040 28.22

::::::::::::
0.789 0.040 30.69 0.900 0.029

OPD-AL 28.36 0.807 0.039
:::::::::::
28.16 0.790 0.040

:::::::::::
30.40

::::::::::::
0.871

::::::::::::
0.030

better for both Gaussian and Poisson noise, such as the fringes on the hula skirt in the upper
example of Fig. 3 and the texture of the sweater in the lower example of Fig. 3.
OPD vs. Supervised Methods: It is unfair to compare unsupervised OPD with supervised
methods, but we still do some discussion in order to evaluate OPD more comprehensively.
Tab. 1 shows that OPD is better than N2C but worse than all other supervised methods.
However, from the visual perception in Fig. 3, the denoising effect of OPD is comparable to
that of N2C and DnCNN[48]. As an unsupervised method, this result is already satisfactory.
OPD vs. Non-learning Methods: Both the quantization results given in Tab. 1 and the
examples shown in Fig. 3 show that OPD exhibits unquestionable denoising advantages over
non-learning methods. Looking at the example in Fig. 3, it is easy to see that non-learning
methods tend to suffer from oversmoothing, which is well overcome by OPD.
OPD vs. other Multi-frame Methods: OPD is the first unsupervised MFD method. Of
course, it is reasonable that OPD as an unsupervised method is inferior to supervised multi-
frame methods. However, real-life multi-frame scenes often do not support obtaining clean
labels, which is precisely the significance of our research.
OPD vs. single-image Methods: Regardless of supervised or unsupervised, multi-frame
methods always significantly outperform single-image methods. Specifically, OPD is better
than N2N[26], N2S[2] and N2V[23] on detail retention. Even more astonishing, supervised
multi-frame methods such as BPN[44] are almost indistinguishable from ground truth.

4.3 OCT Speckle Noise Reduction
The quantitative evaluation of OCT are shown in Tab. 1. Fig. 4 shows an example result.
OPD Wins SOTA on OCT: Among all the methods involved in the comparison, including
supervised methods, OPD-RC captures the SOTA result, and OPD-AL is only marginally be-
hind. The two OPD methods are the only methods with PSNR exceeding 30 dB. In addition,
the SSIM of OPD-RC reaches 0.9 and the RMSE reaches below 0.03. Fig. 4 demonstrates
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Input

Ground truth

N2CN2N OPD-RC

OPD-ALDnCNNKPN MKPN

N2S

Figure 4: Example result of denoising OCT speckle noise. The results of different categories
of methods are framed with different colored boxes. The categories are listed in Tab. 1.

that the OPD-denoised image has sharper and more intact retinal layers, and the complex
signal of the choroid is not over-smoothed as in other methods.
Kernel-based Methods Fail: Unlike what is seen on synthetic noise, supervised multi-
frame methods such as KPN[31] perform poorly on OCT. Destructive streaks appear in the
images corresponding to KPN[31], MKPN[29] and BPN[44] in Fig. 4. This is because the
laser coherent noise contained in OCT is long-range[37], and methods based on local kernel
prediction cannot mine such global noise well, but OPD based on mutual supervision can.
Self-supervised Methods Fail: N2S[2] and N2V[23] hardly converge on the OCT denoising
task because their premise for local mask estimation is that the noise contained in the image
is signal-independent, which is the opposite of the case of OCT.
OPD-RC vs. OPD-AL: Quantitatively, OPD-AL outperforms OPD-RC on synthetic noise,
but vice versa on OCT. Qualitatively, OPD-AL-processed images seem to be sharper than
those OPD-RC-processed, both on synthetic noise and OCT. This reflects that the alienation
loss may be slightly better than simple randomization. In addition, the results also illustrate
the importance of visual perception beyond quantitative evaluation.

5 Conclusion
For the first time, our work defines the concept of mutual supervision and proposes an unsu-
pervised strategy named OPD for MFD. Unlike pairwise supervision in traditional learning
strategies, OPD uniformly establishes supervision relationships among multiple images par-
ticipating in learning. We propose two specific algorithms, OPD-RC and OPD-AL, respec-
tively from the perspectives of data allocation and alienation loss design. The experiments
show the effectiveness of our OPD strategy on several MFD tasks including denoising Gaus-
sian and Poisson noise and OCT speckle noise reduction.
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