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Abstract
This document is a supplement to the BMVC 2022 submission # 0061: "One-Pot

Multi-Frame Denoising". The supplementary material covers OPD-related theoretical
derivation, algorithm implementation, and experimental results. Sec. 1 provides a rigor-
ous derivation of the alienation loss in the OPD-AL method. Sec. 2 gives additional de-
tails about the experimental implementation, including the network architecture used for
demonstration (2.1), hyperparameter settings for each experiment (2.2) and the explana-
tion and selection of evaluation metrics (2.3). In Sec. 3, we conduct a series of ablation
studies to explore the relationship between the proposed OPD strategy and some fac-
tors including mutuality of supervision (3.1), image multiplicity (3.2), noise level (3.3),
and training efficiency (3.4). Sec. 4 provides additional experimental results containing
high-resolution version of the example results in the main paper (4.1), respective results
on BSD300, KODAK and SET14 (4.2), and other example results for denoising AWGN
and Poisson noise (4.3).

1 Rigorous Derivation of Alienation Loss
We explain the derivation of LOPD, which refines the process from the Eq. (7) to the Eq. (8)
in the main paper.

Let us first review the polynomial theorem.
Theorem 1 Any nonnegative power of a polynomial summation can be expanded into a sum
of the form:

(a1 +a2 + ...+ap)
q = ∑

l1+l2+...+lp=q

q!
l1!l2!...lp!

al1
1 al2

2 ...a
lp
p (1)

where n,m ∈ N, n,m ≥ 2 and ki ∈ [0,n] , i ∈ [1,m].
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The Eq. (7) in the main paper is formulated as:

LC
OPD =

1
NB

NB

∑
i=1

Li =
1

NB

NB

∑
i=1

∥∥∥ 1
m

m

∑
j=1

fΘΘΘ(xxxi +nnn j
i )− x̂xxi

∥∥∥2

2
, (2)

where the superscript C of LC
OPD indicates that this loss is still under clean supervision.

Replace the fΘΘΘ(xxxi + nnn j
i ) by yyy j

i and use the way described in Theorem 1 to disassemble the
summation:
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(3)

where Li1 and Li2 respectively refer to the two terms in the summation. Further decompose
Li2:
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Put the result of Eq. (4) into Eq. (3):
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Put the result of Eq. (5) into Eq. (2), then we can get LC
OPD shown by the Eq. (8) in the

main paper:
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2 Supplementary Details of the Experiments
Due to space limitations, the main paper only provides necessary instructions for the exper-
imental implementation. This section gives more supplementary details including network
architecture (2.1), hyperparameter settings (2.2) and evaluation metrics (2.3).

2.1 Network Architecture
Considering training as efficient as possible without impairing model performance too much,
a modified U-Net[12, 22] is selected as the demonstrative model. U-Net is first proposed by
Ronneberger et al.[22] and achieves promising performance in image segmentation tasks.
Since then, many variants of U-Net have been designed and perform prominently in various
tasks[4, 6, 7, 9, 20, 24]. Due to the high efficiency of training and hierarchical feature
concatenation, U-Net and its variants are widely used in tasks related to image restoration and
reconstruction, especially in medical image scenes, such as computed tomography (CT)[8],
optical coherence tomography (OCT)[21], and positron emission tomography (PET)[23].
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Figure 1: Schematic diagram of the structure of the U-Net we used. (Conv: convolutional
layer; BN: batch normalization layer; Deconv: deconvolution layer.)

Fig. 1 demonstrates the structure of the U-Net we used, including contracting encoder
and expanding decoder. The encoder reduces the size of the feature maps hierarchically
while increasing the number of channels. Conversely, the decoder hierarchically enlarges
the size of the feature maps while reducing the number of channels. Both the encoder and
decoder contain five stages. Each stage of the encoder performs three steps programmati-
cally, which are two 3×3 convolutions followed by batch normalization (BN)[10] and Leaky
ReLU[16], and a 2× 2 max pooling with a stride of 2. Each stage of the decoder performs
four steps programmatically, which are a 2× 2 deconvolution with a stride of 2, a concate-
nation with the symmetrical feature map in the encoder, and two consecutive convolutions
followed by BN and Leaky ReLU. The number of parameters of our model is about 15
million.

2.2 Hyperparameter Settings
When training the denoising models separately for three different noises, the hyperparameter
settings are obviously different. The batch size (BS) and the initial learning rate (iLR) set-
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tings for the four strategies of N2C, N2N[15], OPD-RC and OPD-AL on the three scenarios
are shown in Table 1. For the four strategies mentioned above, during training, the learning
rate is reduced by half every 10 epochs and the number of epochs is set to 300. For other
learning-based methods participating in the comparison, such as KPN[19], model training is
performed according to the settings provided by the corresponding papers. Hyperparameters
used in experiments corresponding to the OPD-RC results presented in the main paper are
not specifically optimized but use the same hyperparameters as the experiments under N2C
and N2N, which allows us to better see that, other things being equal, the proposed simple
RC operation magically give the model a performance boost. We also specially optimized the
hyperparameters for OPD-RC, which are given in Tab. 2. Tab. 2 shows that the performance
of OPD can be further slightly improved with hyperparamenters optimization.

Table 1: The hyperparameter settings for the experiments on the synthetic noise (Gaussian
& Poisson), OCT and OCTA datasets under N2C, N2N, OPL-RC and OPL-LD strategies.
(BS: batch size; iLR: initial learning rate.)

OPD-RC / N2C / N2N OPD-AL
BS iLR (×10−3) BS iLR (×10−3)

AWGN 64 7.2 4 1.8
Poisson noise 64 4.8 4 1.2

OCT 4 1.8 1 0.9

Table 2: Hyperparameters optimization for OPD-RC.
hyperparameters denoising results

BS iLR (×10−3) PSNR SSIM RMSE

optimization w/ w/o w/ w/o w/ w/o w/ w/o w/ w/o

AWGN 64 64 5.6 7.2 28.28 28.15 0.807 0.805 0.040 0.040
Poisson 64 64 3.2 4.8 28.30 28.22 0.790 0.789 0.039 0.040

OCT 4 4 1.0 1.8 30.71 30.69 0.902 0.900 0.028 0.029

2.3 Evaluation Metrics
Peak signal-to-noise ratio (PSNR), structural similarity (SSIM)[25], and root-mean-square
error (RMSE) are used as evaluation metrics to quantify the performance of the involved
methods. The essence of these evaluations is quantitative comparison between the predicted
denoised image x̂xx and the clean reference image xxx.

PSNR measures the global distortion and noise level between two images by calculating
error at the pixel level. The larger the PSNR, the better the quality of the predicted image.
The calculation formula of PSNR is:

PSNR(xxx, x̂xx) = 10log
MAX2

xxx

MSE(xxx, x̂xx)
, (7)

where MAXxxx represents the maximum pixel value in the ground truth image. MSE(xxx, x̂xx)
refers to the mean square error between x̂xx and xxx, which is calculated as follows:

MSE(xxx, x̂xx) =
∑H

i=1 ∑W
j=1(x̂xxi, j − xxxi, j)

2

H ×W
, (8)

where H and W are the height and the width of the image respectively.
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SSIM measures the structural deviation between two images by comprehensively con-
sidering the information of brightness, contrast, and structure. Therefore, SSIM is sensitive
to differences in local structure and the contrast of images, which is similar to human visual
perception. The calculation formula of SSIM is:

SSIM(xxx, x̂xx) =
(2µxxxµx̂xx +C1)(2σxxx,x̂xx +C2)

(µ2
xxx +µ2

x̂xx +C1)(σ2
xxx +σ2

x̂xx +C2)
, (9)

where µxxx and µx̂xx represent the mean value of xxx and x̂xx respectively, and σxxx and σx̂xx represent
the standard deviation of xxx and x̂xx respectively. σxxx,x̂xx refers to the covariance between xxx and
x̂xx. C1 and C2 are constant terms used to maintain numerical stability. In our experiments, C1
and C2 are respectively set to 1× 10−4 and 9× 10−4, which are their most frequently used
empirical values.

RMSE represents the square root of the second moment of the difference between the
pixel values of the predicted image and the reference image. The calculation formula of
RMSE is:

RMSE(xxx, x̂xx) =

√
∑H

i=1 ∑W
j=1(x̂xxi, j − xxxi, j)2

H ×W
, (10)

where H and W are the height and the width of the image respectively.
RMSE is always non-negative, and in general, a low RMSE is better than a high RMSE.

Unlike PSNR and SSIM, RMSE is extremely sensitive to outliers, which enables the failure
of local image denoising to be more accurately quantified.

3 Ablation Study
The main paper has demonstrated the strong performance of the OPD strategy on multi-frame
denoising. However, the exploration of the many possible underlying factors behind this su-
perior performance of OPD and the robustness of OPD in different situations is still lacking.
This section provides additional discussions on these issues, including the importance of the
mutuality of supervision (3.1) and image multiplicity (3.2) for OPD, the robustness of OPD
to various noise levels (3.3), and the impact of OPD on training efficiency (3.4).

3.1 Does the Mutuality of Supervision really Help?
We hold the view that the outstanding performance of the proposed OPD stems from mutual
supervision. In order to verify this point of view more practically, we reduce the number
of frames to 2. At this time, mutual supervision means the random exchange of the sample
and the label within data pairs during training, which is called N2N with a shuffle proba-
bility of 0.5 (N2NS0.5). From the quantitative results given in Tab. 3, it can be seen that
N2NS0.5 outperforms N2N in all aspects. Additionally, we simply learn data pairs in two
supervision directions one after another, which is named bidirectional learning (BDL). This
twice-augmented dataset performs almost as well as N2NS0.5. However, the rough augmenta-
tion of the dataset consumes almost twice of training time that under N2NS0.5. Furthermore,
we conduct gradient experiments on the OCT dataset with probabilities ranging from 0 to 1.
The results (Fig. 2) also show that the mutuality really boosts the performance of OPD on
multi-frame denoising.

3.2 Does a Higher Image Multiplicity really Help?
The greater the number of frames, the greater the number of mutual-supervision combina-
tions. Gradient experiments were carried out on OCT and the results are shown in Fig. 3.
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Table 3: Evaluation of the effectiveness and high training efficiency of mutual supervision.
N2NS0.5 means N2N with a shuffle probability of 0.5 and BDL means bidirectional learning.
The best results are marked in red.

AWGN Poisson noise OCT
PSNR SSIM RMSE T(s)/Iter. PSNR SSIM RMSE T(s)/Iter. PSNR SSIM RMSE T(s)/Iter.

N2N 27.48 0.787 0.048 419.7 27.28 0.775 0.044 420.1 28.07 0.817 0.040 25.9
N2NS0.5 27.58 0.801 0.043 422.1 27.79 0.779 0.042 421.6 28.63 0.864 0.037 26.3

BDL 27.56 0.798 0.044 780.7 27.80 0.779 0.042 779.2 28.56 0.863 0.037 49.6

Figure 2: OCT speckle noise reduction using N2NS with different shuffle probabilities.

To enhance comparability and facilitate visualization, only the four curves corresponding to
N2C, N2N, OPD-RC and OPD-AL are drawn in Fig. 3 and other methods are not consid-
ered in this comparison. Additionally, for the numerical discrimination of the RMSE for
elegant visualization, the RMSE is calculated using the image with pixel values in the range
[0, 255] in Fig. 3 so that its values lie between 0 and 10. It can be seen that, with the increase
of image multiplicity, the superiority of OPD in comparison with N2N and N2C gradually
reduces. On the one hand, the skyrocketing amount of data might gradually bridge the dif-
ference between methods. On the other hand, the theoretically best denoising performance
on multi-frame denoising is proportional to the square root of the image multiplicity m[3],
which makes it less and less profitable as the number of frames growing.

Figure 3: OCT speckle noise reduction using OPD and other supervision strategies with
gradient image multiplicity.

3.3 Is OPD Robust to Various Noise Levels?
In the denoising experiments for synthetic noise in the main paper, σ for Gaussian noise is
set to 25 and λ for Poisson noise is set to 30. This setting corresponds to the most common
levels of both types of noise in the real world[11]. However, the robustness of the proposed
OPD strategy to more faint or intense levels of noise deserves further study. Therefore, we
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performed gradient experiments. The σ of the Gaussian noise is separately set to 5 gradients
from 5 to 45, with a difference of 10 between each two adjacent gradients. The λ of Poisson
noise is separately set to 5 gradients from 10 to 50, and the difference between every two
adjacent gradients is also 10. The results of the denoising experiments are shown in Fig.
4. In order to facilitate comparison and display, only five curves corresponding to Input,
N2C, N2N, OPD-RC and OPD-AL are given in Fig. 4, and other methods are not involved
in the comparison. Additionally, for the numerical discrimination of the RMSE for elegant
visualization, the RMSE is calculated using the image with pixel values in the range [0, 255]
in Fig. 3 so that its values lie between 0 and 10. It can be seen from Fig. 4 that both OPD-RC
and OPD-AL perform stronger than N2N and comparable to N2C for any level of noise, no
matter for Gaussian or Poisson noise and no matter for which of the three metrics. These
results fully reflects the robustness of OPD to different levels of noise contained in images.

Figure 4: Evaluation of denoising results for different levels of Gaussian and Poisson noise
using OPD and other supervised strategies.

3.4 Can OPD Improve the Efficiency of Training?
In principle, the OPD strategy only improves the diversity of supervision by increasing the
potential space of paired data, and does not actually increase the amount of training data, so
there is no theoretical obstacle to the convergence of model training. To verify this point,
we recorded and plotted in Fig. 5 the loss curves for different strategies during training of
the model for denoising AWGN. Because OPD-AL uses its own loss function, which makes
the model iteration process different from other strategies without strict variable constraints,
OPD-AL is not included in the comparison here. For the clarity and beauty of the visualiza-
tion, only N2C and N2N are compared with OPD-RC in Fig. 5, and the loss curves on the
training set and validation set are displayed separately in two subplots. It is evident from Fig.
5 that, instead of slowing down the model convergence, OPD-RC significantly accelerates
the convergence process compared to N2N and N2C. This result is surprising but reasonable,
because OPD improves the diversity of supervision and brings additional space for optimiza-
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tion paths for the model to search and optimize in the parameter space. From this point of
view, the proposed OPD is not only effective but also efficient.

Figure 5: Loss curves during training for denoising AWGN.

4 Additional Results
Due to space limitations, only a few representative experimental results are given in the main
paper, which will be supplemented in this section. Sec. 4.1 gives high-resolution versions
of the example results corresponding to Fig. 3 and 4 in the main paper. The quantitative
evaluation results of synthetic noise in the main paper are averaged on the three test sets
of BSD300, KODAK and SET14, and Sec. 4.2 gives the respective results on them. In
addition, Sec. 4.2 also provides two additional example results for BSD300, KODAK and
SET14 each, including one for AWGN and the other for Poisson noise. Sec. 4.3 provides
additional example results of denoising AWGN and Poisson noise.

4.1 High-resolution Version of Example Results in the Paper
Fig. 3 and 4 in the main paper give representative examples of experimental results for
AWGN, Poisson noise and OCT speckle noise. In order to better show the details, Fig 6, 7
and 8 respectively give their corresponding high-resolution versions for comparing and view-
ing. For better presentation, the results for AWGN and Poisson noise are shown separately
in Fig. 6 and 7.

4.2 Respective Results on BSD300, KODAK and SET14
The main paper only provides average quantitative evaluation results on three test sets of
BSD300, KODAK and SET14 for synthetic AWGN and Poisson noise. The respective re-
sults on the three datasets are given in Tab. 4.

4.3 Additional Example Results for AWGN and Poisson Noise
Qualitative results for denoising AWGN and Poisson noise are supplemented in this section.
Fig. 9, 10 and 11 give example results for BSD300, KODAK and SET14 for AWGN, re-
spectively. Fig. 12, 13 and 14 give example results for BSD300, KODAK and SET14 for
Poisson noise, respectively.
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Figure 13: An example result from KODAK for denoising Poisson noise.
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