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Abstract

Training semantic segmentation models on multiple datasets has sparked a lot of re-
cent interest in the computer vision community. This interest has been motivated by ex-
pensive annotations and a desire to achieve proficiency across multiple visual domains.
However, established datasets have mutually incompatible labels which disrupt princi-
pled inference in the wild. We address this issue by automatic construction of universal
taxonomies through iterative dataset integration. Our method detects subset-superset re-
lationships between dataset-specific labels, and supports learning of sub-class logits by
treating super-classes as partial labels. We present experiments on collections of stan-
dard datasets and demonstrate competitive generalization performance with respect to
previous work.

1 Introduction

Semantic segmentation is an important computer vision task with exciting applications in
intelligent transportation [14], medical diagnostics [25], remote surveillance [4], and au-
tonomous robots [13]. Current state of the art is based on strongly supervised learning
which induces a strong dependence on dense semantic ground truth. Unfortunately, pro-
ducing dense annotations requires a lot of time and money [0, 43]. There are several datasets
of intermediate size [21, 24, 37, 41], but none that is sufficient for delivering robust perfor-
mance in the wild [37]. Thus, training across several datasets and domains appears as an
attractive research direction.

A simple baseline involves per-dataset heads over shared features [9, 15]. Per-dataset
predictions can be recombined into a common taxonomy [42], however this is not easily
adapted to multi-class problems and overlapping taxonomies [20, 23, 39]. Another baseline
concatenates per-dataset taxonomies [9, 22] and feeds them to common softmax. However,
this may entail capacity loss due to competition between related logits. A recent approach
reconciles a set of taxonomies by pragmatic label adaptation [18] that however has to drop
some classes in order to reduce the relabeling effort. Recent work leverages hand-crafted
universal taxonomies that allow superclass labels to promote subclass recognition and vice
versa [2, 20, 23]. However, this requires human judgment which is expensive and error
prone.
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Figure 1: We consider automatic construction of a universal taxonomy from multiple datasets
with incompatible labels (orange box). Our method recovers a set of disjoint universal
classes, and connects each dataset-specific class to one or more universal classes. These
1:N mappings enable training and evaluation on original labels (top-right). The universal
model can be exploited for interpretable inference in the wild (bottom-right).
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This paper makes a step further by considering automatic extraction of universal tax-
onomies over incompatible datasets as sketched in Figure 1. Our method hypothesizes
cross-dataset relations through co-occurence analysis. We disambiguate these hypotheses
against each other according to mloU performance on all training datasets. We perform ex-
periments on collections of large semantic segmentation datasets such as Vistas, Ade20k,
COCO and WildDash 2. The recovered automatic taxonomies perform comparably to their
manual counterparts [2] while outperforming all other baselines [18] by a considerable mar-
gin.

2 Related work

We consider semantic segmentation for natural scene understanding (sec. 2.1) by studying
cross-domain models which transcend particular training taxonomies (sec. 2.2). We focus
on automatic construction of universal taxonomies (sec. 2.3).

2.1 Semantic segmentation

Semantic segmentation classifies each input pixel into one of C known classes [8, 29]. It is
one of the most computationally intensive computer vision tasks due to high output resolu-
tion. The training footprint often constrains the model capacity [27]. Huge computational
complexity leads to very long training times. Consequently, efficient models [12, 25, 26]
and knowledge transfer [11] are a good fit for large cross-domain experiments. Besides
faster training, they also improve accessibility and decrease environmental impact [28].

2.2 Cross-domain training

Early cross-domain training approaches do not incorporate relations between individual tax-
onomies. Instead, they either use separate dataset-specific prediction heads on top of shared
features [16], or train on a concatenation of particular taxonomies [22]. Naive concatenation
has been improved by encouraging cross-talk between logits [9].

Training dense open-set recognition models on positive and negative data may improve
detection of unknown [3, 5] or novel classes [32]. This can be viewed as asymmetrical cross-
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domain training. The positive domain corresponds to the primary recognition task (e.g. road
driving) while the negative domain typically corresponds to anomalies [1, 5, 31].

Some cross-domain approaches propose hierarchical universal taxonomies with distinct
nodes for categories and classes [20, 23]. However, this requires complex learning proce-
dures while not offering advantages over flat universal taxonomies.

Incompatible datasets can be unified under a custom common taxonomy by manual re-
labeling and removal of subclasses [18, 38]. However, these modifications are tedious and
destructive. The more datasets one converts, the harder it gets to extend the common tax-
onomy with new subclasses. This issue can be elegantly solved by constructing a universal
taxonomy where each dataset-specific class can be expressed as a union of universal classes
[2]. In this case, universal logits can be trained with respect to dataset-specific labels (cf.
Figure 1) since dataset posteriors correspond to sums of universal posteriors [7]. The result
of such construction allows principled cross-dataset training without any modification of the
original datasets. We extend this approach by considering automatic construction of such
universal taxonomy from datasets with differing granularities.

2.3 Automatic construction of universal taxonomies

Manual resolution of dataset discrepancies is error prone, especially when the ambition is
to train on multiple large-scale datasets with hundreds of symbolic labels. This issue can
be elegantly curcumvented by expressing semantic labels with text embeddings instead of
categorical distributions [19, 35]. However, a recent study reveals that label semantics often
vary across datasets. Their experiments suggest that visual cues outperform label semantics
as a tool for recovering cross-dataset relations [33].

Recent work constructs an automatic taxonomy for object detection [42]. Their approach
starts by training a model with shared features and separate prediction heads [9, 15]. Sub-
sequently, they freeze the trained features and optimize dataset-specific mappings through
linear programming. The resulting cross-dataset mappings outperform their text-embedding
counterparts. However, this approach does not handle subset/superset relationships and
therefore does not produce a true taxonomy when dataset-specific classes happen to over-
lap. This situation hampers multi-class performance due to competition between related
logits [2].

Cross-dataset relations have also been recovered according to class names [18]. In this
setup, superclass logits can be trained with subclass labels [17]. However, this setup can not
accommodate the standard multi-class loss, fails if there is a name mismatch [33, 42], and
cannot train subclass logits with superclass labels.

Different than all previous work, our method constructs the only flat universal taxonomy
which retains all labels in presence of subclass/superclass relations.

3 Method

We consider automatic recovery of a flat universal taxonomy for a given collection of datasets
in order to allow cross-domain training of dense prediction models. We propose to automat-
ically discover hierarchical relations between classes of the two datasets and use this infor-
mation to construct the universal taxonomy as illustrated in Figure 2. We extend pairwise
taxonomies for arbitrary tuples of datasets through tournament-style iteration.
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Figure 2: 'We collect information about cross-dataset relations and expres it as a bipartite
graph that connects classes of the two datasets (left). We analyze the bipartite graph in order
to recover the universal taxonomy (right). Each edge of the bipartite graph identifies the
visual concept shared by the related classes.

Occasionally, our cross-domain models will predict classes which are disjoint from the
native taxonomy of the input image. We denote such occurrences as foreign or extra-domain
predictions. Conversely, predictions which fall within the native taxonomy are denoted as
intra-domain predictions.

3.1 Universal taxonomy for two datasets

Let us consider two dataset-specific taxonomies as 7, = {c¢{} and T, = {C? +. We apply
a model trained for 7, to training data with 7;, groundtruth and the other way round. We
collect co-occurrence statistics between ground-truth classes and foreign predictions and
store them into two co-occurrence matrices |T,| x |Tp| and |7}| x |T,|. For convenience, we
shall denote the most common foreign prediction for a ground-truth class ¢ as mcfp(c). We
shall hypothesize relations between datasets by considering a bipartite graph induced by the
mcfp function. The graph has |T,| + |T,| vertices which represent classes, and |T,| + ||
edges pointing from a ground-truth class to its most frequent foreign prediction. Hence,
each vertex has exactly one outgoing edge. This choice increases the statistical power of our
hypotheses and reduces the number of hypotheses and hyper-parameters.

We illustrate our approach on the following two taxonomies: ADE20K = {’ade-road’,...}
and Vistas = {’vistas-road’, ’vistas-zebra’,...}. The class ’ade-road’ is a superset of ’vistas-
road’ and ’vistas-zebra’. In Vistas images we shall typically have mcfp(’vistas-road’) =
mcfp(’vistas-zebra’) = ’ade-road’. On the other hand, in ADE20k images we will have:
mcfp(’ade-road’) = ’vistas-road’. We observe that the mcfp statistic suffices to hypothesize
that "ade-road’ is a superset of ’vistas-road’ and ’vistas-zebra’.

We analyze the bipartite graph as follows. Cycles of length 2 (¢! — c’j’. — ¢f) indi-

cate overlap. Asymmetric relationships (c¢{ — clj?) suggest a subset hypothesis clj? Dcf. In-

b
i
clj’. DAt D c’]’.. This would mean that ¢{ Nc¢f # @, which is impossible since input datasets

consistent triplets ¢f — ¢ — c¢f where ¢} /4 c? suggest a subset and a superset hypothesis

have proper taxonomies. We consider ¢ C c? and cf- C ¢} as competing hypotheses which
we disambiguate in 3.2. Figure 3 illustrates this procedure on the ADE20K-Vistas example.

We recover the final universal taxonomy from the disambiguated bipartite graph (cf.
Figure 4, right). The graph associates each universal class with all incident dataset-specific
classes. We thus base the names of universal classes on associated dataset-specific classes: a
one-way edge inherits the name of its source vertex, while a two-way edge inherits the names
of both adjacent vertices. If we have ade-car— vistas-car and vistas-car — ade-car, we would
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Figure 3: Our method collects two co-occurrence matrices (left) between the ground truth
(rows) and foreign predictions (columns). For each row, we locate the strongest column and
form a bipartite graph (center-left). We note three 2-cycles (green), two asymmetric relation-
ships (orange), and two inconsistent triplets (red). We form pairs of conflicting hypotheses
(shades of the same color, center right) and resolve them by comparing performance on the
training dataset (cf. Figure 4). The collected evidence allows us to recover the universal
taxonomy (right).

have a universal class named ’ade-car/vistas-car’. Such naming convention provides a degree
of interpretability to resulting universal models.

3.2 Conflict resolution with improved naive concatenation

Naive concatenation is a cross-domain pseudo-taxonomy which we obtain by aggregating
dataset-specific taxonomies. We use the term pseudo-taxonomy since its members may
overlap (e.g. ade-road and vistas-road). Such overlaps require discrimination of semanti-
cally related concpets and consequently diminish the effective model capacity.

Naive concatenation performance can be improved by performing post-inference map-
ping towards the evaluation taxonomy. We define unnormalized classification score of a
particular evaluation class S(c{) as the sum of its posterior P(c¢) with posteriors of intersect-
ing foreign classes P(c?) [2]:

S(cy=P(c)+ Y. P(ch) (1)

b
C?ﬁcj;é(l)

b

The expression ¢{ N c’]? # 0 is true when ¢ and ¢ f

prediction corresponds to argmax; S(c{).

are in any kind of relation. The model

We illustrate the recovery of different dataset-specific scores over ADE20K and Vistas
as follows: S(ade-road) = P(ade-road) 4 P(vistas-road) + P(vistas-zebra), S(vistas-road) =
P(vistas-road) + P(ade-road) and S(vistas-zebra) = P(vistas-zebra) + P(ade-road).

We can use post-inference mapping to compare competing hypotheses arising from in-
consistent triplets (§3.1). We create a post-inference mapping for each competing hypothesis
and evaluate performance according to (1). We choose the hypothesis with the highest train
mloU performance averaged over all involved datasets. The resolution involves 2NpN¢ au-
tomatic evaluations where N¢ denotes the number of conflicting pairs and Np indicates the
number of training datasets. This procedure is illustrated in Figure 4.
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Figure 4: Resolution of contradicting hypotheses according to the train performance of the
naive concatenation model with post-inference mapping. The winning hypotheses are se-
lected according to the unnormalized classification score (1) on all train datasets. We resolve
one pair of hypotheses at a time. This requires 2NcNp evaluations where N¢ is the number
of conflicting pairs and Np indicates the number of training datasets.

3.3 Universal taxonomy for more than two datasets

Recovering a pairwise universal taxonomy allows us to unify the two involved datasets.
The resulting meta-dataset contains images from the two datasets and partial labels in form
of unions of universal classes. We can proceed by unifying this meta-dataset with subse-
quent datasets. However, lack of proper ground-truth precludes recovery of the proposed co-
occurrence matrix. We therefore approximate the co-occurrence matrix with a co-incidence
matrix between intra-domain and foreign predictions.

To recover a universal taxonomy for more than two datasets, we proceed iteratively. We
start by forming pairwise universal taxonomies. We then train naive concatenation models
over pairs of meta-datasets and use them to unify the involved meta-datasets. We formulate
mapping functions for original datasets as compositions of intermediate mapping functions.

The proposed procedure can be applied to any number of datasets in a straight-forward
manner. We have successfully applied this procedure in order to recover the universal taxon-
omy for the MSeg dataset collection.

4 Experiments

We train semantic segmentation models in multi-domain setups. We promote efficient ex-
perimentation [28] by leveraging pyramidal SwiftNet [26] with three shared ResNet-18 [10]
backbones and ImageNet pre-training (SNp-rnl8). We train on automatic universal tax-
onomies with partial labels [2, 7, 39]. We train naive concatenation models with the stan-
dard NLL loss and the multi-head model with a sum of head-specific NLL losses. Both
losses prioritize pixels at semantic boundaries [40]. We perform early stopping with respect
to average mloU validation performance. We attenuate the learning rate between 5-10~*
and 6 - 107° through cosine annealing. We evaluate by mapping foreign predictions to the
void class [2, 6].

We train on random crops of 512x512 (§4.2 and §4.3) or 768 x768 pixels (§4.1) with
horizontal flipping and random scaling between 0.5x and 2x. We favour crops with rare
classes and form batches with even representation of all datasets. Our universal models were
trained on one Tesla V100 32GB. We train naive concatenation models on two GPUs in order
to ensure the same batch size across considered dataset collections. We construct universal
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taxonomies by analyzing only the training subsets.

4.1 Unifying dataset pairs

We present experiments on pairs of datasets with incompatible taxonomies. We compare
our automatic universal taxonomy with two baselines as well as with a manually constructed
universal taxonomy [2]. The two baselines are the naive taxonomy and a model with per-
dataset prediction heads and a separate dataset detection head. All models are trained for
100 epochs.

Table 1 presents results of unifying Vistas [24] (road-driving, 65 classes) and WilDash 2
(WD2, road-driving, 25 classes) [37]. We split WD2 into minitrain and minival as in [2]. Vis-
tas has a finer granularity than WD2 with the exception of car types. Our automatic universal
taxonomy performs comparably to the manual universal taxonomy while outperforming the
multi-head baseline as well as naive concatenation.Interestingly, our automatic taxonomy
outperforms the manual taxonomy on some rare Vistas classes, which is likely due to their
association with more frequent WD2 classes (e.g. wd-person and vistas-ground-animal, and
wd-truck and vistas-trailer).

Taxonomy # evals WD2 Vistas
two heads + dataset recognition 65+33+2 N/A 540 422
naive concat 98 N/A 548 428
manual univ. 67 N/A 562 444
auto univ. (ours) 67 4 54.6 45.9

Table 1: Evaluation of joint training on WD2 and Vistas. Columns show the number of logits
(#), number of tested hypotheses (evals) and mloU performance on both datasets.

Table 2 pairs Vistas with ADE20K [41] (photos, 150 classes). This experiment also
validates two approaches for collecting evidence about visual similarity of dataset-specific
classes. We compare separately trained per-dataset models [33] with the naive concatenation
baseline. We also validate the two conflict resolution approaches based on co-occurrence
and co-incidence matrices. Note also that conflict resolution is not feasible with separate
per-dataset models.

We observe that the universal taxonomy produced by separate models has almost as many
logits as the naive concatenation baseline. Our automatic universal taxonomy for ADE20k-
Vistas has less training logits than its manual counterpart. Interestingly, it hypothesizes less
relations than the manual approach (182 < 186) even before the contradicting hypotheses
are resolved. This happens because our automatic method connects some classes that are
kept separate in the manual taxonomy (e.g. connecting flags with banners or rail tracks with
conveyor belts). Coincidence matrices perform similarly to co-occurrence matrices, although
their universal taxonomies differ.

4.2 Merging multiple datasets

Table 3 evaluates our universal taxonomy over three datasets. We start from the universal tax-
onomy ADE20K-Vistas and extend it through unification with COCO (photos, 133 classes)
[21]. Due to the huge size of the COCO dataset, we decrease the number of training epochs
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Taxonomy # evals ADE \Vistas
naive concat 215 N/A 368 41.1
manual univ. 186 N/A 374 42.7
auto univ. (separate models, co-occurrence) 213 N/A 374 41.7
auto univ. (concat, co-occurrence) 178 24 374 428
auto univ. (concat, coincidence) 176 26 36.9 42.5

Table 2: Evaluation of joint training on ADE20K-Vistas. Columns show number of logits
(#), number of tested hypotheses (evals) and mloU performance on both datasets. Automatic
construction of universal taxonomy with separate per-dataset models underperforms with
respect to the taxonomies built with naive concatenation. Collecting evidence through co-
occurrence and coincidence performs comparably.

to 20. Before cropping, each image is resized so that its smaller side is 1080 pixels. We train
our models on full training datasets, but only use the first 10000 images from each dataset
for automatic construction of the universal taxonomy. The table shows that automatic uni-
versal taxonomy outperforms naive concatenation while substantially reducing the number
of training classes.

Taxonomy # evals ADE Vistas COCO
naive concatenation 348 N/A 307 32.7 36.5
manual univ. 243  N/A 313 39.0 34.6
auto univ. 233 44 30.8 37.4 37.7

Table 3: Joint training on ADE20K, Vistas and COCO. Columns show the number of logits
(#), number tested hypotheses (evals) and mloU performance.

Figure 5 presents a qualitative comparison between our automatic taxonomy and naive
concatenation. Our automatic taxonomy succeeds to actualize many good class connections,
such as mapping ade-food to {ade-food/coco-donut, coco-pizza, coco-sandwich, coco-hot-
dog, coco-carrot, coco-food-other}. Furthermore, it finds some coherent connections we
did not initially consider in our manual taxonomy such as mapping ’ade-person’ to {’vistas-
bicyclist’, *vistas-person/ade-person/coco-person’, ’coco-baseball glove’, *coco-tie’ }.

4.3 Large-scale experiment on the MSeg dataset collection

The MSeg dataset collection [18] encompasses ADE20K [41], BDD (19 classes) [36], Cityscapes
(28 classes) [6], COCO [21], IDD (31 classes) [34], SUN RGBD (37 classes) [30] and Vistas
[24]. The authors of the MSeg collection adapt all seven datasets towards a custom universal
taxonomy of 194 classes. However, their taxonomy entails an omission of 61 classes in or-
der to contain the relabeling effort. Note also that adding a new class to the MSeg taxonomy
would require manual relabelling of all seven datasets.

We start the recovery by unifying dataset pairs: BDD-Cityscapes, IDD-Vistas, and ADE-
COCO. We proceed by unifying BDD-City with IDD-Vistas, and ADE-COCO with SUN
RGBD. Finally, we construct the universal taxonomy over all 7 datasets. If COCO is among
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Figure 5: Qualitative comparison of cross-domain models on ADE20K (top), Vistas (mid-
dle) and COCO (bottom). We show the input image (column 1), ground truth labels (column
2), predictions of the naive concatenation model (column 3), and predictions of our model
in universal (column 4) and dataset-specific labels (column 5). Naive concatenation intro-
duces competition between logits that represent the same visual category. This triggers void
predictions (black) on sky and road in the Vistas image. Our universal model finds univer-
sal classes that are not present in the corresponding dataset-specific taxonomy and connects
them with correct dataset-specific classes: road-marking — road and curb — sidewalk in
COCO, tie — person in ADE20K and van — car in Vistas.

the training datasets, we train for 20 instead of 100 epochs.

Table 4 compares our automatic universal taxonomy to the manual universal taxonomy
and the MSeg taxonomies. Our automatic taxonomy performs comparably to the manual
universal taxonomy [2] while outperforming MSeg taxonomy and naive concatenation. Our
automatic taxonomy contains less classes than the manual universal taxonomy. This happens
due to a few incorrect associations between rare classes such as equating city-caravan, ade-
washer and coco-toaster. Furthermore, our approach brings some debatable but arguably
correct decisions due to visual similarity. For example, vistas-pole is associated with bdd-
pole/city-pole/vistas-pole/ade-pole, coco-baseball bat, coco-skis, sun-night-stand, and ade-
column-pillar.

Interestingly, our approach finds some potentially valid connections that we did not
initially consider in our manual taxonomy. For instance, it associates vistas-water to ade-
swimming pool (there is often water in swimming pools), city-person to coco-handbag (peo-
ple carry handbags) and bdd-fence to ade-cradle (cradles often have a safety fence).

Taxonomy # evals ADE BDD City COCO IDD SUN \Vistas

naive concat. 469 N/A 270 556 690 298 513 374 337
manual univ. [2] 294 N/A  31.0 585 72,6 354 544 417 39.1
MSeg original 194 N/A 233 594 726 303 426 402 26.1

auto univ. 243 164 30.7 59.6 72.7 35.6 552 423 35.8

Table 4: Multi-domain performance evaluation (mloU %) on the MSeg collection [18]. Un-
like [18], we perform evaluation on all classes from the original dataset taxonomies as in [2].
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5 Conclusion

We have presented a proof-of-concept for automatic construction of interpretable universal
taxonomies for collections of multi-domain datasets with incompatible taxonomies. Our
method constructs a set of 1:N mappings which associate dataset-specific classes with their
universal counterparts. These mappings establish a hierarchy of visual concepts across par-
ticular taxonomies and equip our universal models with a degree of interpretability. The
resulting universal taxonomies allow training in the universal label space by treating dataset-
specific classes as partial labels.

Our construction approach proceeds by iterative pairwise unification. The unification
procedure operates by testing hypothesized relationships between dataset specific classes.
We create hypotheses by analyzing a bipartite graph between intra-domain (pseudo) la-
bels and extra-domain predictions. We disambiguate hypotheses according to mloU per-
formance of the naive concatenation model with post-inference mapping on all involved
training datasets.

We evaluate our universal taxonomies in experiments on dataset collections with incom-
patible taxonomies. We consider collections from the same domain as well as cross-domain
collections. We use lightweight models to reduce the training time, yet still succeed to
infer coherent relations between classes. Our universal models can deliver both universal
and dataset-specific predictions without decreasing inference speed. The reduced number of
training logits indicates that our models are more memory-efficient than ad-hoc alternatives.

Our automatic universal taxonomies outperform the naive concatenation baseline and
perform comparably to manually designed taxonomies. They are also much more flexible
than custom universal taxonomies designed for the standard NLL loss [18, 38], since we can
exploit the full training potential of a given dataset collection without any relabeling effort.
We observe the best relative performance of our models in large-scale experiments.

Future work should examine ways of streamlining the universal taxonomy construction
and explore alternatives for hypothesizing relations between dataset specific classes.
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