DiffSketching: Sketch Control Image Synthesis with Diffusion Models

Qiang Wang, Di kong, Fengyin Lin, Yonggang Qi $^{\bowtie}$

{wanqqiang,dikong,fylin,qiyg}@bupt.edu.cn

Beijing University of Posts and Telecommunications, Beijing, China

1 Introduction

We propose DiffSketching, the first cross-domain sketch-to-image synthesis method utilizing diffusion models. Our method can be self-supervised when matching inputs, overcoming the large domain gap between sketch and generator's parameter space.

2 Contributions

- Our method performs better on benchmarks than GAN-based models.
- 2. We can guide the generation process more finely and eliminate the singularity and uncertainty of input sketches.
- Our method is capable of editing images and conducting image interpolation.

3 Method

We use perceptual diversity learning and image constraint identity learning to fine-tune the generation of diffusion models:

$$\mathcal{L}_p = \sum_{l=1}^{L} \frac{1}{H_l W_l} \sum_{h,w} ||w_l \odot (F_s(\hat{s}_0(\hat{\theta}))_{hw}^l - F_s(s_0)_{hw}^l)||_2^2$$
$$\mathbf{F}_i(\mathbf{x}_0) \cdot \mathbf{F}_i(\hat{\mathbf{x}}_0(\hat{\theta}))$$

 $\mathcal{L}_i = \frac{\mathbf{I}_i(\mathbf{x_0}) \cdot \mathbf{I}_i(\mathbf{x_0}(\hat{\boldsymbol{\theta}}))}{\|\mathbf{F}_i(\mathbf{x_0})\| \|\mathbf{F}_i(\mathbf{\hat{x}_0}(\hat{\boldsymbol{\theta}}))\|}$

$$\mathcal{L} = \lambda \mathcal{L}_i(x_0, \hat{x}_0(\hat{\theta}))) + (1 - \lambda) \mathcal{L}_p(s_0, \hat{s}_0(\hat{\theta}))$$

4 Experiments

Quantitative experiment

Method	$FID\downarrow$	IS ↑	Precision ↑	Recall ↑	Human 1	
USPS	48.73	23.74	0.42	0.38	26.45%	
MUNIT	56.50	28.99	0.34	0.51	20.23%	
Sketch-YOG	19.94	48.94	0.70	0.53	18.85%	
Ours	6.46	89.91	0.68	0.56	34.47%	
$Ours(w/o \mathcal{L}_p)$	7.22	83.43	0.33	0.39	N/A	
$Ours(w/o \mathcal{L}_i)$	11.78	63.09	0.40	0.44	N/A	
Ours(Quickdraw)	6.65	87.42	0.67	0.49	N/A	

Qualitative experiment

Test on real human sketches

Fine-grained sketch controlling

$\begin{array}{c} & & & \\ & &$

Image editing and interpolation

ł.	X	X	*	a s	*				
â	est .		11	AN.	A.		AK	- Alla	
		Will House	Se la compañía de la		5		X	K	Ð
No. Con		A	C.	K	K	1816	B	in the second	57

References

[1] Sheng-Yu Wang, David Bau, and Jun-Yan Zhu. Sketch your own gan. In *Proceedings of ICCV*, pages 14050–14060, 2021.
[2] Xun Huang, Ming-Yu Liu, Serge Belongie, and Jan Kautz. Multimodal unsupervised image-to-image translation. In *Proceedings of ECCV*, pages 172–189, 2018.
[3] Runtao Liu, Qian Yu, and Stella X Yu. Unsupervised sketch to photo synthesis. In *ECCV*, pages 36–52. Springer, 2020.

