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From a single RGB image predict aligned 3D shapes that represent the given
scene.
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Visualising Inputs

• Using a fraction 
of available 
pixels (here 3 %) 
reduces gap 
between 
training and 
validation loss

• Validation 
accuracy is 
increased from 
25 % to 32 %

Sparse Inputs Reduce Overfitting

Quantitative Results - ScanNet

Qualitative Results - ScanNet
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Pose	Prediction	Network:	SPARC-Net
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Sparse Render-and-Compare produces more accurate alignments compared to NOCs.
Sparse Inputs can be rendered very fast and processed efficiently due to cross attention.
Predicting pose update steps reduces the number of iterations needed to just 3 leading to a 
total runtime of 110 ms (compared to traditional render and compare requiring 100s of update 
steps with run times of ca. 30s). 
SPARC-Net does not seem able to make full use of all available information (particularly precise 
normal estimates) and does not improve when using more than 3 refinement steps.
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Geometric Correspondence Fields [3]

Im2CAD [2]

Limitations:
• Slow as require large number of iterations ([2]: 250 , [3]: 1000)
• Slow as perform and process full render (Total time: [2] 4 min, [3] 36s)
• Require very good initialisation

Render-and-Compare

Limitations:
• NOCs are difficult to predict 
• Ambiguity in alignments at train time 

cause displacements at test time
• Scale is predicted directly from the 

RGB image

Predicted Alignment

ROCA [1]


