

SPARC: Sparse Render-and-Compare for CAD BRIDGE model alignment in a Single RGB Image

Florian Langer, Gwangbin Bae, Ignas Budvytis, Roberto Cipolla Department of Engineering, University of Cambridge

Problem

From a single RGB image predict aligned 3D shapes that represent the given scene.

RGB Image

Aligned 3D Shapes

Overlays

Related Work Normalised Object Coordinates ROCA [1] Segmentation NOCs

Limitations:

RGB image

• NOCs are difficult to predict

Ambiguity in alignments at train time

cause displacements at test time

Scale is predicted directly from the

Predicted Alignment

Render-and-Compare Im2CAD [2]

Geometric Correspondence Fields [3]

Limitations:

- Slow as require large number of iterations ([2]: 250, [3]: 1000)
- Slow as perform and process full render (Total time: [2] 4 min, [3] 36s)
- Require very good initialisation

Reprojected NOCs

Method

Visualising Inputs

Sparse Inputs Reduce Overfitting

Qualitative Results - ScanNet

Quantitative Results - ScanNet

Method	bathtub	bed	bin	bkshlf	cabinet	chair	display	sofa	table	class	instance
Number of Instances #	120	70	232	212	260	1093	191	113	553	9	2844
Total3D-ODN [4]	10.0	2.9	16.8	2.8	4.2	14.4	13.1	5.3	6.7	8.5	10.4
Mask2CAD-b5 [5]	7.5	2.9	24.6	1.4	5.0	29.9	13.1	5.3	5.6	10.6	16.7
ROCA [1]	20.8	8.6	26.3	9.0	13.1	39.9	24.6	10.6	12.7	18.4	25.0
SPARC-Net (ours)	25.8	25.7	24.6	14.2	20.8	51.5	17.8	28.3	15.4	24.9	31.8
SPARC-Net + ROCA rot init	25.0	30.0	36.2	14.2	19.2	52.3	20.4	28.3	20.1	27.3	34.1

Discussion

 Using a fraction of available pixels (here 3 %) reduces gap between training and validation loss Validation accuracy is increased from

25 % to 32 %

+ Sparse Render-and-Compare produces **more accurate** alignments **compared to NOCs.**

- Sparse Inputs can be **rendered very fast** and **processed efficiently due to cross attention**.
- Predicting **pose update steps reduces the number of iterations** needed to just **3** leading to a total runtime of **110 ms** (compared to traditional render and compare requiring **100s** of update steps with run times of ca. **30s**).
- SPARC-Net does not seem able to make full use of all available information (particularly precise normal estimates) and does not improve when using more than 3 refinement steps.

References

[1] Gümeli, C., Dai, A., Nießner, M. ROCA: Robust CAD Model Retrieval and Alignment from a Single Image. CVPR (2022) [2] Izadinia, H., Shan, Q., Seitz, S. Im2CAD. CVPR (2017) [3] Grabner, A. Wang, Y. Zhang, P., Guo, P., Xiao, T., Vajda, P., Roth, P., Lepetit, V. Geometric Correspondence Fields: Learned Differentiable Rendering for 3D Pose Refinement in the Wild. ECCV (2020) [4] Nie. Y, Han, X., Guo, S., Zheng, Y., Chang, J., Zhang, J. Total3DUnderstanding: Joint Layout, Object Pose and Mesh Reconstruction for

Indoor Scenes from a Single Image. CVPR (2020)

[5] [14] Kuo, W., Angelova, A., Lin, T., Dai, A. Mask2CAD: 3D Shape Prediction by Learning to Segment and Retrieve. ECCV (2020)