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We provide additional information for various aspects of our main work. In Sec. 1 we
present alignment accuracies evaluated with the orignal (wrong) evaluation code and the
corrected one. In Sec. 2 we demonstrate the effectiveness of sparse sampling at different
image resolutions. In Sec. 3 and Sec. 4 we give additional information for training our
pose prediction network, SPARC-Net, and the networks used for depth and surface normal
estimation. In Sec. 5 we highlight issues when trying to align differently shaped CAD
models with each other and the resulting systematic offsets that appear in the predictions
of the normalised object coordinates. We quantitatively support this section by ablating our
system with ROCA [7] predictions in Sec. 6. Limitations and possibility for future works
are discussed in Sec. 7. In Sec. 8 we visualise pose predictions for inaccurate bounding box
predictions and finally in Sec. 9 we explain a released video showing extra qualitative results
on ScanNet [6].

1 Correction to Evaluation Script

Scan2CAD [2] proposed to consider a CAD alignment correct if the object class prediction
is correct, the translation error is less than 20 cm, the rotation error is less than 20 degrees
and the scale ratio is less than 20 %. We found that there was a bug in the original evalua-
tion code which was subsequently used to evaluate ROCA [7] and Mask2CAD [9]. When
computing the scale ratio the formula serror = |∑i=x,y,z(s

pred
i /sgt

i − 1)| was used instead of
serror = ∑i=x,y,z |(s

pred
i /sgt

i )− 1| which allowed scale errors in different directions to cancel
each other out. We correct for this mistake and reevaluate [7, 9]. The accuracy computed
with the evaluation code containing the mistake are presented in Table 1 and their corrected
counterparts are presented in Table 2.
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Method bathtub bed bin bkshlf cabinet chair display sofa table class instance
Mask2CAD-b5 [9] 8.3 2.9 25.9 3.8 5.4 30.9 17.3 5.3 7.1 11.9 17.9

ROCA [7] 22.5 10.0 29.3 14.2 15.8 41.0 30.4 15.9 14.6 21.5 27.4
Ours 26.7 25.7 26.7 17.5 23.8 52.6 22.5 32.7 17.7 27.3 33.9

Ours + ROCA rot init 27.5 30.0 41.4 17.5 23.5 53.7 26.2 32.7 22.6 30.6 36.8

Table 1: Alignment accuracy with original (incorrect) treatment of scale predictions on
ScanNet [6].

Method bathtub bed bin bkshlf cabinet chair display sofa table class instance
Mask2CAD-b5 [9] 7.5 2.9 24.6 1.4 5.0 29.9 13.1 5.3 5.6 10.6 16.7

ROCA [7] 20.8 8.6 26.3 9.0 13.1 39.9 24.6 10.6 12.7 18.4 25.0
Ours 25.8 25.7 24.6 14.2 20.8 51.5 17.8 28.3 15.4 24.9 31.8

Ours + ROCA rot init 25.0 30.0 36.2 14.2 19.2 52.3 20.4 28.3 20.1 27.3 34.1

Table 2: Alignment accuracy with correct treatment of scale predictions on ScanNet [6].

2 Investigating Sparse Sampling for Different Image
Resolutions

We investigate the effect of sparse sampling at different image resolutions. Particularly, we
test the claim that using less than 1% of the available pixels can give accurate pose esti-
mates through render-and-compare. We test 3 image resolutions with (width,height) set to
(240,180), (480,360) and (640,480). Compared to the main experiment we use a simpli-
fied setup where we do not explicitly include 2D image information from the reprojected
pixel locations (i.e. Nreproj = 0) or context image information from outside the bounding
box (Ncontext = 0). We set (NCAD = 100,Nbbox = 330), (NCAD = 500,Nbbox = 1200) = and
(NCAD = 1000,Nbbox = 2000) for the three image resolutions respectively. These values
were chosen such that the sum of NCAD and Nbbox is just less than 1% of the total number of
pixels at the given resolution. Here we find that even at the smallest resolution we obtain an
average instance accuracy of 30.7% (compared to 31.8% for the main experiment). For the
resolutions (480,360) and (640,480) we obtain average instance accuracies of 30.2% and
30.8% respectively. Those results show that sparse sampling is indeed effective at various
image resolutions and even for small image sizes sampling less than 1% of the available
pixels can give accurate pose estimates.

3 Additional Train and Test Information
Train data generation. We generate per-image CAD model pose annotations for all images
in ScanNet25k [6] (which is the original ScanNet[6] dataset sampled for every 100th frame)
by transforming CAD model pose annotations from [2] from ScanNet [6] world coordinates
into camera coordinates. ScanNet25k [6] contains ca. 20K train images from 1200 differ-
ent scenes. Note that for a given image we only train our CAD model to align CAD models
whose center is reprojected into the image (such as to avoid training on objects that are barely
visible). Further, we filter objects which do not have at least 50% of their reprojected depth
values within 30 cm of the ground truth depth values. This avoids training on objects that
are hidden behind walls or in other way strongly occluded.
Pose sampling at train time. When initialising poses for training we uniformly sample
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translations T to be between 1 and 5 m along the Z-axis and sample X and Y by uniformly
sampling pixel coordinates in the predicted bounding box and mulitplying the corresponding
pixel bearing by the sampled Z to obtain X and Y values. Scale values S are sampled uni-
formly in the range of all observed CAD model scales for the detected category. 25% of train
examples are uniformly sampled in random rotation (any azimuthal angle, 20◦ tilt range and
40◦ elevation range around Rgt) to learn to classify rotations, whereas 75% of train examples
are sampled in the correct rotation bin (90◦ azimuthal angle range, 20◦ tilt range and 40◦

elevation range around Rgt) to learn to regress pose offsets.
At test time the pose prediction network is used to iteratively refine its own predictions. Dur-
ing training it is therefore crucial to not just generate random CAD model poses, but also
poses based on the networks predictions. This ensures that the poses sampled during training
are as similar to the ones the network sees at test time as possible. For every image and cor-
responding CAD model annotation we therefore use a randomly initialised pose as well as
the two subsequent refinements predicted by the network as training data. Specifically, for a
batch of N train examples, each containing image information and CAD model information
sampled in a random initial pose, we predict the pose updates and apply losses. Based on
the predicted pose updates, we update the CAD model poses for every train example and re-
compute the inputs. The recomputed inputs are fed through the network again, pose updates
are predicted and losses applied. This process is repeated once more, after which new train-
ing images with new CAD models in random initial poses are sampled as the next training
examples.
Test details. At test time R is initialised with four rotations at 0, 90, 180 and 270 degrees
around the vertical axis, 0 degrees tilt and 20 elevation angle (such that the camera is look-
ing slightly down at an object that is standing straight upright). T is initialised to have z = 3
m and x and y such that the reprojected T lies at the bounding box center. The scale S is
initialised with the median value of all CAD models for the given category. For the rotation
with the highest classification score c we predict (∆T,∆R,∆S) and iteratively refine the pose
3 times. Note that our pose prediction network is very robust to poor initialisation for scale
and translation (see the video explained in Sec. 9) but can not reorient CAD models if their
are initialised within the wrong 90◦ rotation bin.

4 Details for Training Surface Normal and Depth
Networks

For both surface normal NImg and depth estimation DImg, we use a light-weight convolu-
tional encoder-decoder architecture from [1]. For both tasks, we predict the per-pixel prob-
ability distribution for the output and supervise the network by minimizing the negative log-
likelihood (NLL) of the ground truth. For surface normal, we parameterize the distribution
using the Angular vonMF distribution, proposed in [4], while we parameterise the depth dis-
tribution with a gaussian distribution. After training, we discard the uncertainty and only use
the predicted mean values. We use ground truth surface normals provided by [8] and ground
truth depth as provided by ScanNet [6], respecting the train/test split. For depth we train on
all two million available train images, while for surface normals we train on all images for
which [8] provide annotations and that are within the set of train images which results in
ca. 200K train images. We train both networks for ten epochs using the AdamW optimiser
[11] and schedule the learning rate using 1cycle policy [12] with lrmax = 3.5× 10−4 (same
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as [5]). We use a batch size of four for both surface normal and depth training.

5 Aligning CAD Models for Normalised Object
Coordinates

ROCA [7] relies on predicting Normalised Object Coordinates (NOCs) for each pixel of the
detected objects. NOCs are 3D object coordinates in a canonical frame in which objects have
been aligned. However, here we demonstrate that aligning different object shapes with each
other is not trivial. Figure 1 shows that even for two very similar shapes different alignments
are possible depending on which object parts one wishes to align. This means that NOCs
learned for one shape do not generalise well to other shapes. When attempting to predict
NOCs we observe that ROCA [7] often predicts NOCs with a systematic offset (see Figure
2). Here we show the NOCs predicted overlayed in the canonical object frame. One can see
that the 3D coordinates predicted are often systematically above or below the actual object.
This means that even though the reprojected NOCs roughly match the objects in the image
the corresponding object alignment is very wrong.

6 Ablating SPARC with ROCA Predictions

The previous section showed that ambiguities in aligning different shapes with each other
can lead to systematic offsets when predicting NOCs. A second issue with ROCA [7] is
that object scale is directly regressed which is inaccurate and can produce very wrong scale
estimates subsequently leading to poor translation estimates. We demonstrate both of these
issues quantitatively by replacing either the scale, translation or rotation prediction of our
system with ROCA’s [7] prediction (see Table 3, lower half). The top half of the table is a
copy of our main results table and is for reference only. Note that the row “Ours + ROCA
rot init” uses the ROCA rotation predictions as an initialisation which is subsequently re-
fined by our own predictions. In contrast the rows “Ours + ROCA rotation/translation/scale”
show results when replacing the respective predictions with ROCA’s predictions and keeping
them fixed during the refinement process. We observe a noticeable drop in alignment accu-
racy when replacing our translation or scale predictions with ROCA’s confirming the issues
presented above. ROCA’s rotation predictions are largely unaffected by inaccurate scale pre-
dictions and systematic offsets in NOCS and we observe that they perform similarly to ours.

7 Limitations

This section lists limitations of the current approach which we plan to address in future
works.
Dense depth and surface normal predictions. Currently our method uses dense depth and
surface normal estimates that are precomputed. If depth and surface normals are computed
in realtime, predicting them sparsely only for relevant pixel coordinates may reduce infer-
ence time. Further for real applications our method could make use of additional sensory
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Shape	1 Shape	2 Alignment	1 Alignment	2 Aligning	Different	Shapes

Figure 1: Issues with shape alignment. When trying attempting to align Shape 1 and
Shape 2 with each other different alignments are possible. Alignment 1 aligns the top and
the bottom of the chairs. This ensures that both shapes fit into the same normalised 3D
bounding box and is the alignment used for NOCs. Alignment 2 aligns the chairs by their
seating area. While now both shapes do not lie in the same normalised 3D bounding box,
their seating areas align which is useful when trying to predict their coordinates. The point
is that for different shapes different alignments are possible depending on which object parts
one wishes to align. The more different the shapes are the harder it is to find some global
alignment that aligns all different object parts with each other. This means that NOCs learned
for one shape do not generalise well to NOCs learned for other shapes.

Input GT Ours NOCs	ReprojectedROCA NOCs	View	1 NOCs	View	2 NOCs	View	1 NOCs	View	2

Figure 2: Visualisation of ROCA’s NOCs predictions. For different inputs we show the
GT CAD model alignment, our prediction and ROCA’s prediction. Further we show the
estimated NOCs overlayed in the canonical object frame from different views for relevant
objects. We also show the NOCs reprojected back into the image under the predicted pose.
One can observe that the predicted NOCs are often systematically offset from the actual 3D
shape. Therefore even though the NOCs reprojected under the estimated pose roughly match
the images the corresponding CAD alignments can be very wrong.
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Method bathtub bed bin bkshlf cabinet chair display sofa table class instance
Number of Instances # 120 70 232 212 260 1093 191 113 553 9 2844

ROCA [7] 20.8 8.6 26.3 9.0 13.1 39.9 24.6 10.6 12.7 18.4 25.0
Ours 25.8 25.7 24.6 14.2 20.8 51.5 17.8 28.3 15.4 24.9 31.8

Ours + ROCA rot init 25.0 30.0 36.2 14.2 19.2 52.3 20.4 28.3 20.1 27.3 34.1
Ours + ROCA rotation 19.2 22.9 29.3 13.2 20.0 46.1 16.8 27.4 15.9 23.4 29.6

Ours + ROCA translation 20.8 10.0 22.8 9.0 11.5 40.7 14.1 17.7 11.4 17.6 24.2
Ours + ROCA scale 1.7 24.3 22.8 6.6 12.7 43.9 17.3 21.2 9.6 17.8 24.9

Table 3: Ablation of SPARC-Net with ROCA predictions. The top half repeats the results
presented in the main paper. The lower half shows results when we replace one of our predic-
tions (rotation, translation or scale) with ROCAs [7] prediction. Note that those predictions
are not refined with our own predictions. Row 3 “Ours + ROCA rot init” in contrast uses
ROCA’s rotation prediction as an initialisation which is subsequently refined with our own
predictions.

information such as LiDAR which provides naturally sparse depth inputs that can easily re-
place predicted depth values in our pipeline. Further for video applications event cameras
[10] may be of particular interest as these are extremely fast and energy efficient as they only
react to changes in light intensity, therefore providing sparse image data containing object
edge information that is crucial for 3D shape estimation or CAD model alignment.
Rotation predictions. Currently our handling of rotation is not elegant as at test time it
requires four extra forward passes through our network to determine the initialisation of the
rotation. This aspect could be improved by reprojecting the four different rotation initial-
isation simultaneously while at the same time predicting pose updates for all of them, but
then only applying those pose updates to the rotation initialisation with the highest estimated
probability.
CAD model refinements. Currently, our approach is limited to refining an initial object
pose, but not the initial object shape. In general all retrieval-based approaches for shape
estimation are limited by the availability of a fitting CAD model. However, even with grow-
ing CAD model databases it is unrealistic that every object in the real world will have a
precisely fitting CAD model in the database. Therefore it is important to deform a retrieved
CAD model to better fit an observed object. This could be nicely achieved with the presented
framework by in addition to 9 DoF pose updates predicting N-dim shape updates where N
are the numbers of parameters of some shape transformation. One possibiliy for such a shape
transformation function are neural cages [13].
Joint shape and pose predictions. Currently for reconstructing scenes every object is
treated individually. However, this neglects important information contained within object-
object relationships. These can contain information about the pose (e.g. two tables that are
standing next to each other are likely to be aligned with each other) or the shape (e.g. chairs
around a table are likely to have the same shape which can be a very important signal when
dealing with strong occlusion.). Taking into account such information (e.g. by modelling it
as a scene-graph [3] will further improve our shape and pose predictions.
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Input Bounding Box Predicted Pose GT Pose

Figure 3: Predicted alignments for inaccurate and partial bounding box detections.

8 Visualisations for Inaccurate and Partial Bounding Box
Detections

In Fig. 3 we show additional qualitative visualisations when the bounding box predictions
are inaccurate. In row 1 one can see that even though the bounding box prediction only
extends over a part of the kitchen cupboard SPARC-Net correctly predicts a shape for the
entire cupboard (similarly in row 3 and row 5). Furthermore, both the predicted poses for the
chair in the front in row 2 and the table in row 4 result in their reprojected shapes reaching
outside of the predicted bounding box and therefore leading to better poses compared to if
the poses had been confined to lie within the bounding box.
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Figure 4: Visualisation Video. We visualise intermediate refinement steps on ScanNet [6]
in a video (https://youtu.be/eVVW__0QGnM).

9 Visualisation Video
In the visualisation video (https://youtu.be/eVVW__0QGnM) one can see nicely that
our pose prediction network, SPARC-Net, is very robust to rough initialisation and able
to significantly translate, rotate and scale CAD models to fit the objects observed in the
image. The results demonstrate the advantage of an iterative procedure: the first refinement
is usually a large pose update, transforming the often very bad initialisation to roughly match
the pose of the object in the image. The second and third refinement in contrast are smaller
pose updates that really align the CAD model with the objects in the image.

Note that for some images in the video the number of ground truth CAD models and the
number of CAD models for which the pose is predicted do not correspond exactly, either due
to missing 2D object detections or because of missing ground truth annotation as [2] did not
provide exhaustive CAD model annotation for ScanNet [6].
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