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Abstract

Learning-based multi-view stereo (MVS) has been studied for years. To overcome
the problem of massive computational overhead and memory footprint, different reg-
ularization schemes have been attempted. For instance, recurrent methods trade time
for space and regularize the cost volume as a sequence, with a RNN to interchange the
depth-wise context between sliced cost maps. Meanwhile, cascade methods follow a
coarse-to-fine regularization fashion, which enables a gradually refined depth range but
still requires a large amount of memory. To this end, we present a novel network for
multi-view stereo, termed as HR-MVSNet, which adopts a hybrid design of cascade
coarse-to-fine and recurrent cost volume regularization. HR-MVSNet benefits not only
from the low memory consumption by the recurrent regularization scheme, but also from
the fast inference speed brought by cascade methods. Extensive experiments show that
our HR-MVSNet achieves a nice balance between performance and efficiency. It is able
to conduct satisfactory reconstruction while still keeps the memory footprint at a rela-
tively low level. For the point clouds and comparative experiments with HR-MVSNet,
please contact the first author.

1 Introduction
Multi-view stereo (MVS) aims to reconstruct a dense geometric representation of the ob-
served scene given a collection of images with known camera parameters. It is a funda-
mental problem in computer vision and has various applications, e.g., 3D reconstruction,
augmented reality and autonomous driving. Learning-based MVS methods have achieved
impressive results in terms of reconstruction quality, since deep features can provide more
robust matching clues against weakly textured regions and varying lighting conditions. Typi-
cally, a learning-based MVS network firstly extracts image features and then builds a unified
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cost volume under the frustum of the reference camera with a series of depth hypotheses.
The cost volume is then regularized to obtain the probability distribution of depth values. At
last, a depth estimator is adopted to turn the per-pixel distribution into an estimated depth
map.

The massive computation overhead and memory occupancy of the 3D U-Net in MVS-
Net [20] for cost volume regularization make the network less applicable in practice. To
mitigate this problem, previous attempts follow different regularization schemes, namely re-
current regularization and cascade regularization. Proposed in R-MVSNet [21], recurrent
regularization models depth-wise matching costs as sequential data and applies a RNN to
deliver inter-depth context information. As a well acknowledged representative of cascade
regularization, CasMVSNet [7] performs cost volume regularization in a multi-stage man-
ner, where a coarse depth map is estimated first and used to guide subsequent sampling of
local finer depth.

MVS methods [4, 13, 16, 18] adopting either regularization scheme have successfully
reduced the computational costs of MVSNet but still suffer from the following problems.
(a) Recurrent methods trade time for space so that with a relatively low memory demand,
the inference time becomes dramatically longer. (b) Cascade methods apply 3D CNNs
for stage-wise cost volume regularization which require the whole volume to be constantly
maintained in the memory, making the memory occupancy practically unacceptable for a
common GPU model. The detailed introduction of both methods is elaborated in Sec. 2.
Recently, efficiency-focused methods for MVS reconstruction are emerging. Patchmatch-
Net [15], inspired by the traditional PatchMatch algorithm [2, 3], only adopts 2D CNNs for
regularization and significantly improves the efficiency of learning-based MVS.

To this end, we propose a novel efficient network for MVS, termed as HR-MVSNet,
which benefits from both RNN-based recurrent methods and multi-stage cascade methods.
It adopts a hybrid regularization scheme where the overall architecture follows a multi-stage
cascade scheme but in each stage, the cost volume is processed in a typically recurrent way.
The idea of hybrid regularization makes HR-MVSNet capable of achieving state-of-the-art
performance at a low memory cost. Fig. 1 provides a visualized comparison of HR-MVSNet
and other state-of-the-art methods in terms of reconstruction quality, inference time and
memory consumption.

2 Related Work

Deep learning has been introduced to the task of MVS for better reconstruction quality.
MVSNet [20] follows the traditional plane sweep algorithm [5], where the depth range is
discretized into finite depth value candidates and a cost volume is built to measure the vari-
ance of multi-view image features with each of the depth values given. In this way, MVSNet
encodes camera parameters and image features into one cost volume in a differentiable way,
enabling an end-to-end training scheme. MVSNet adopts a 3D U-Net for cost volume regu-
larization, which is computationally expensive and brings high memory occupancy. Several
solutions have been proposed to alleviate this problem. They can be categorized into RNN-
based recurrent methods [16, 18, 21] and multi-stage cascade methods [4, 7, 19, 23]. Fig. 2
provides an illustration of recurrent and cascade regularization methods.
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(b) Runtime efficiency of different networks.

Figure 1: A visualized comparison in performance and efficiency of HR-MVSNet and other
state-of-the-art methods on the evaluation set of DTU dataset [1]. In (a), methods lying on
the same dotted line share the same overall reconstruction error.

2.1 Recurrent Methods

Recurrent methods regularize the 3D cost volumes recurrently, and adopt RNNs to trans-
mit features between adjacent depth hypotheses. The cost volume is divided into slices at
the depth dimension and the slices are regularized sequentially by a 2D CNN. As a result,
the memory consumption of cost volume regularization becomes invariant to the number of
depth hypotheses. R-MVSNet [21] adopts convolutional GRU units for cost volume reg-
ularization while D2HC-RMVSNet [18] and AA-RMVSNet [16] choose LSTM units for
better robustness and generalizability. Since recurrent methods trade time for space, they are
capable of handling a large number of depth hypotheses, but at the cost of inference speed.

2.2 Cascade Methods

Led by CasMVSNet [7], multi-stage cascade methods follow a coarse-to-fine pattern for
making depth hypotheses [4, 19] (with normally three stages). In the first stage, a low-
resolution depth map is estimated with a rough sampling of depth values. In the following
stage, the image resolution is lifted and the plane sweeping is guided by the interpolated
coarse depth, where the depth hypotheses are sampled around the coarse depth values. Larger
resolution depth maps are estimated as the candidate depth division becomes finer. Benefit-
ing from the gradually narrowed depth range, cascade methods are known to obtain accurate
depth maps with a much faster inference speed compared to recurrent methods. Cascade
methods generally adopt non-shared 3D CNNs for cost volume regularization at different
stages, which leads to substantial or even unacceptable memory consumption.

3 Method

We follow the common pipeline of depth-based MVS reconstruction where per-view depth
maps of the image set are estimated first and then fused to obtain the dense 3D point cloud.
Specifically, for a reference image I0, the proposed network estimates a corresponding depth
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Figure 2: An illustration of recurrent regularization scheme and cascade regularization
scheme. (a) In recurrent regularization, the cost volume is divided from the dimension of
D. Each cost slice is regularized sequentially and a RNN is applied to thread all intermedi-
ate outputs. (b) In cascade regularization, cost volumes are regularized stage by stage in a
multi-scale manner, where early estimated depth guides subsequent differentiable homogra-
phy. Each stage is regularized by a 3D CNN.

map by aid of its N−1 neighboring source images {Ii|i= 1, . . . ,N−1}, as well as the camera
parameters of all N images.

We present the overall architecture of the network in Fig. 3. The network first applies a
feature extraction network which extracts multi-scale deep image features. It then constructs
cost volumes with extracted features and aggregates multiple pairwise cost volumes into one.
The cost volume encodes featuremetric similarity between all N − 1 sources image and the
reference image as well as the respective camera parameters. Afterwards, a cost volume
regularization network with hybrid design is adopted to leverage 3D context in an efficient
manner. At last, the depth map of the reference view is outputted.

3.1 Feature Extraction
The consistency across multi-view images in a typical learning-based MVS network is mea-
sured by featuremetric similarity. To extract multi-scale deep image features for coarse-to-
fine cascade regularization, we apply a FPN [10] for multi-scale feature extraction.

3.2 Cost Volume Construction
The goal of cost volume construction and aggregation is to encode image features as well
as camera parameters into a canonical space so the network is well adapted to any arbitrary
value of N. Concretely, plane sweep algorithm [5] defines the canonical space as the fronto-
parallel planes of the reference camera frustum.

Since our hybrid regularization scheme is three-staged following the conventions of cas-
cade regularization [7, 23], the determination of depth hypotheses is coarse-to-fine, where
early estimated depth guides subsequent stages. Please refer to the Supplemental Material
for detailed information. Note that the hybrid regularization enables a more flexible choice
of sampling strategies.
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Figure 3: An overview of the network architecture of HR-MVSNet. Multi-scale deep image
features are extracted and cost volumes are build in a coarse-to-fine manner. For each of the
three stages, RNN-based recurrent regularization is applied.

The warping process from a pixel of the reference view p ∈ R2, with a specific depth
hypothesis d, to the i-th source view, is formulated as

p̂ = πi(Riπ
−1
0 (p;d)+ ti), (1)

where π : R3 → R2 denotes the perspective projection parameterized by known camera in-
trinsics. Ri and ti stand for the relative rotation and translation from the reference view to the
i-th source view. We denote the warped feature map of the i-th source image with a global
depth hypothesis d as F̂(d)

i . The pairwise matching cost between the source view and the
reference view is

c(d)i = ∥F̂(d)
i −F0∥2

2. (2)

The squared ℓ-2 norm measures the featuremetric similarity between one source image and
the reference image. To reduce the dimension of N and aggregate all pairwise cost vol-
umes into one, we follow the adaptive inter-view aggregation scheme in [16] to estimate the
aggregated cost volume at d as

C(d) =
1

N −1 ∑
i
[1+ωθ (c

(d)
i )]⊙ c(d)i , (3)

where ⊙ represents Hadamard multiplication and ωθ : RH×W×F → RH×W×1 is a gated con-
volutional network parameterized by θ . With the depth hypothesis d assigned as each possi-
ble sampled values, we obtain the aggregated cost volume for regularization.

3.3 Hybrid Cost Volume Regularization
The constructed and aggregated 3D cost volume provides an elementary measure of fea-
turemetric similarity. The procedure of cost volume regularization aims to leverage spatial
constraints to denoise the volume as well as to enforce the piece-wise smoothness of depth
maps. It is also acknowledged as the most computationally expensive module in a learning-
based MVS network.
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Figure 4: Illustration of the hybrid network for stage-wise cost volume regularization. It
contains 5 RNN connections with LSTM architecture and 1 2D encoder-decoder CNN.

The overall design of the proposed hybrid regularization is illustrated in Fig. 4. It fol-
lows a cascade pattern, where three coarse-to-fine regularization stages are applied. In each
regularization stage, we instead apply the principle of recurrent methods and adopt a hybrid
network with convolution layers (for cost map regularization) and LSTM (Long Short-Term
Memory) units (for inter-depth context). Since larger resolution and D lead to heavier com-
putation, we can balance the computational overhead of the three stages, i.e., using a large D
at a coarse resolution and a smaller D when the resolution is finer. As a result, HR-MVSNet
inferences faster than recurrent methods while remains memory-efficient.

The convolutional LSTM contains 1 encoder-decoder network with skip connection and
5 LSTM connections iterating at different intermediate layers of the encoder-decoder net-
work. The encoder-decoder is a 2D CNN which regularizes a cost map (a sliced cost volume
at D) at a time. For example, to obtain the intermediate output o(di)

t+1, where t + 1 and di

denote the index of 2DConv layers and index of cost maps respectively, we need both o(di)
t

and o(di−1)
t+1 . The upper-right part of Fig. 4 shows one single cell of the convolutional LSTM,

where former outputs are concatenated to current inputs and get processed by a convolution
layer and then the tensor is split into four branches for different gates.

3.4 Depth Estimator & Loss Function
As is mentioned in Sec. 3.2, for a more convenient choice of sampling strategies at infer-
ence phase, we apply the winner-take-all strategy to obtain the depth estimation from the
regularized probability volume.

Accordingly, we train the network end-to-end with classification-based cross entropy
loss, where each depth hypothesis is considered as a pre-defined class. The loss function of
the s-th stage is defined as

Ls =− 1
|Ms| ∑

p∈Ms

logP(p;dgt), (4)

where dgt is the corresponding ground truth depth value and M is the binary mask indicating
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Method Acc.(mm)↓ Comp.(mm)↓ Overall(mm)↓ Time(s) Mem.(GB)

Gipuma [6] 0.283 0.873 0.578 - -
COLMAP [14] 0.400 0.664 0.532 - -
MVSNet [20] 0.396 0.527 0.462 1.2 15.4
R-MVSNet [21] 0.385 0.459 0.422 2.4 6.7
D2HC-RMVSNet [18] 0.395 0.378 0.386 8.0 2.4
AA-RMVSNet [16] 0.376 0.339 0.357 26.3 4.2
Vis-MVSNet [23] 0.369 0.361 0.365 - -
CasMVSNet [7] 0.325 0.385 0.355 0.6 5.4
CVP-MVSNet [19] 0.296 0.406 0.351 1.7 8.8
PatchmatchNet [15] 0.427 0.277 0.352 0.3 3.6

HR-MVSNet 0.332 0.310 0.321 1.9 2.3

Table 1: Evaluation results on the evaluation set of DTU dataset [1]. The metrics are
reconstruction errors defined in [1]. The table includes previous non-learning traditional
methods, recurrent methods and cascade methods. The inference time and memory footprint
are tested according to reported experiment settings.

the valid subset of pixels. The final loss is obtained by summing the loss of all three stages
with respective weights of 0.5, 1.0 and 2.0 empirically.

4 Experiments

4.1 Datasets
We apply the following three datasets for experiments. DTU dataset [1] is captured under
well-controlled laboratory conditions with a fixed camera rig, containing 128 scans. Follow-
ing the practice of MVSNet [20], we split DTU dataset into 79 training scans, 18 validation
scans, and 22 evaluation scans. BlendedMVS dataset [22] is a large-scale dataset for multi-
view stereo and contains objects and scenes of varying complexity and scale. There are 106
training scans and 7 validation scans. Tanks and Temples benchmark [8] is a public bench-
mark acquired under realistic conditions, which contains 8 scenes for the intermediate subset
and 6 for the advanced.

4.2 Implementation Details
4.2.1 Training

We train HR-MVSNet on the training set of DTU dataset [1] and set N = 5 and image
resolution H ×W = 512×640. The number of depth hypotheses, namely D, of each stage is
respectively 48, 32, and 8; the corresponding depth interval decays by 0.5 after each stage.
The network is implemented by PyTorch and trained with Adam for 10 epochs with an initial
learning rate of 0.001 and a cosine annealing schedule [11]. The batch size is 4 on 4 NVIDIA
RTX TITAN GPUs. The training phase takes about 16 hours and occupies 10 GB memory
of each GPU. Note that the training of RNN-based networks requires much more memory
than inference to store all intermediate outputs and gradients.

4.2.2 Evaluation

For the evaluation on DTU dataset [1], we set N = 5, H ×W = 864×1152, D of each stage
as 96, 16, 8, and the factor of interval decay as 0.5. We apply forward depth sampling for all
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Method Int.Mean Family Francis Horse L.H. M60 Panther P.G. Train Adv.Mean Audi. B.R. C.R. Museum Palace Temple

COLMAP [14] 42.14 50.41 22.25 26.63 56.43 44.83 46.97 48.53 42.04 27.24 16.02 25.23 34.70 41.51 18.05 27.94
ACMM [17] 57.27 69.24 51.45 46.97 63.20 55.07 57.64 60.08 54.48 34.02 23.41 32.91 41.17 48.13 23.87 34.60
DeepC-MVS [9] 59.79 71.91 54.08 42.29 66.54 55.77 67.47 60.47 59.83 34.54 26.30 34.66 43.50 45.66 23.09 34.00
AttMVS [12] 60.05 73.90 62.58 44.08 64.88 56.08 59.39 63.42 56.06 31.93 15.96 27.71 37.99 52.01 29.07 28.84
CasMVSNet [7] 56.84 76.37 58.45 46.26 55.81 56.11 54.06 58.18 49.51 31.12 19.81 38.46 29.10 43.87 27.36 28.11
Vis-MVSNet [23] 60.03 77.40 60.23 47.07 63.44 62.21 57.28 60.54 52.07 33.78 20.79 38.77 32.45 44.20 28.73 37.70
PatchmatchNet [15] 53.15 66.99 52.64 43.24 54.87 52.87 49.54 54.21 50.81 32.31 23.69 37.73 30.04 41.80 28.31 32.29
R-MVSNet [21] 50.55 73.01 54.46 43.42 43.88 46.80 46.69 50.87 45.25 29.55 19.49 31.45 29.99 42.31 22.94 31.10
D2HC-RMVSNet [18] 59.20 74.69 56.04 49.42 60.08 59.81 59.61 60.04 53.92 - - - - - - -
AA-RMVSNet [16] 61.51 77.77 59.53 51.53 64.02 64.05 59.47 60.85 54.90 33.53 20.96 40.15 32.05 46.01 29.28 32.71

HR-MVSNet 63.12 80.55 65.27 52.85 64.05 64.24 62.18 60.17 55.66 34.27 19.29 39.31 36.22 45.46 30.53 34.80

Table 2: Benchmarking results on the Tanks and Temples [8]. The evaluation metric is mean
F-score (higher is better). Bold figures indicate the best scores.

three stages. For filtering and fusion of depth maps, we adopt the dynamic consistency check
proposed in [18], where both confidence-based thresholding and geometric consistency are
enforced. The detailed ablation study of the hyperparameters is in Sec. 4.4.

Before benchmarking on Tanks and Temples benchmark [8], we further finetune the
network with the training set of BlendedMVS dataset [22]. Following the practice in [16],
we resize input images to the size of 544×1024 and 544×960. Different from the evaluation
on DTU dataset, we adopt inverse depth sampling at the first stage. Other hyperparameters
are consistent with the evaluation on DTU dataset.

4.3 Results

In Tab. 1 we show the comparison between HR-MVSNet and previous well-known methods
in terms of reconstruction error and runtime overhead. HR-MVSNet obtains the lowest over-
all reconstruction error while it achieves a better balance between inference time and memory
occupation. Being as memory-efficient as RNN-based methods, e.g., D2HC-RMVSNet [18]
and AA-RMVSNet [16], the time required for inference is shortened. Compared to cas-
cade methods [4, 7, 23] which mainly adopt 3D CNNs for cost volume regularization, HR-
MVSNet lowers the memory footprint, making it more applicable on low-end devices.

For benchmarking on Tanks and Temples online benchmark [8], we demonstrate the
quantitative comparison in Tab. 2 as well as the qualitative comparison in Fig. 5. Our HR-
MVSNet outperforms previous cascade methods and recurrent methods on several recon-
struction cases.

4.4 Ablation Study

We here study the influence of different numbers of input views N, different image resolu-
tions H ×W , and different numbers of depth candidates D, on the evaluation set of DTU
dataset [1]. As is shown in Tab. 3, the network achieves allround superior results when
N = 5. It is worth noting that the performance is no longer better when N is increased from
5 to 7. It is probably due to the sparse camera distribution of the dataset. Similar results are
observed in [15]. As is shown in Tab. 4, the optimal resolution tends to be 864×1152. From
Tab. 5, we empirically set the numbers of depth hypotheses as 96, 16, and 8.

In addition, to further demonstrate the inference efficiency of HR-MVSNet, we conduct
ablation experiments towards the regularization method applied on different input image
sizes, whose results are shown in Fig. 6. The depth maps are half the resolution of input
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(c) HR-MVSNet(b) AA-RMVSNet(a) CasMVSNet

F-score: 76.37 F-score: 77.77 F-score: 80.55

F-score: 46.26 F-score: 51.53 F-score: 52.85

Figure 5: Comparison of reconstructed results with a cascade method [7], and a recurrent
method [16] on Tanks and Temples benchmark [8]. τ is the scene-relevant distance threshold
and darker regions indicate larger error encountered.
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Figure 6: Ablation study of different regularization settings.

images. For RNN-based regularization, the scheme follows [21] and for the one with 3D
CNN, we adopt [20].

5 Discussions
The motivation of the hybrid design of cost volume regularization is simple and straightfor-
ward. It enables HR-MVSNet to keep the memory consumption at a low level and inference
faster than pure recurrent methods. There is actually an apparent trade-off between space and
time in learning-based MVS networks. Methods using 3D CNNs for cost volume regular-
ization are faster at inference phase for its good parallelizability of computation. Recurrent
methods trade time for space and occupies less memory for inference. The hybrid regular-
ization pattern inherently achieves a good balance between these two sides.

We frankly list the known limitations of HR-MVSNet as follows. (a) Though the infer-
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N Acc. Comp. Overall Mem.(GB)
3 0.357 0.318 0.337 1.9
5 0.332 0.310 0.321 2.3
7 0.343 0.334 0.338 2.9

Table 3: Ablation study of the number of in-
put views (N) on the evaluation set of DTU
dataset [1].

H ×W Acc. Comp. Overall
1200×1600 0.362 0.327 0.345
864×1152 0.332 0.310 0.321
512×640 0.315 0.405 0.360

Table 4: Ablation study of the resolution of
input images (H ×W ) on the evaluation set
of DTU dataset [1].

D0,D1,D2 Overall(mm) Time(s)
96, 16, 8 0.321 1.9
48, 16, 4 0.352 1.3
48, 16, 8 0.349 1.7

Table 5: Ablation study of the number of
depth hypotheses (D) on the evaluation set of
DTU dataset [1].

ence speed has been accelerated compared to recurrent methods, there is still a significant
gap between the inference speed of HR-MVSNet and real-time applications. (b) As HR-
MVSNet adopts coarse-to-fine cascade plane sweep, its performance heavily depends on
the estimation quality of the first stage. (c) Though HR-MVSNet is memory-efficient at
inference phase, it still consumes massive GPU memory at training stage since all interme-
diate layers are stored for back-propagation. (d) Similar to recurrent methods, the memory
consumption is reduced by deleting intermediate tensors which will be no more referred
from GPU. It in fact increases the difficulty of implementation since normally deep learning
frameworks have complicated mechanism of data caching.

6 Conclusion
In this paper, we present HR-MVSNet, which adopts a hybrid design of cost volume regu-
larization that benefits from both RNN-based regularization and cascade multi-stage regular-
ization. It enables memory-efficient recurrent regularization at inference phase and keeps the
memory consumption at a low level, making HR-MVSNet applicable under varying scenes
and on diverse devices. Extensive experiments on a public dataset and an online bench-
mark show that our HR-MVSNet is able to achieve satisfactory results compared to existing
methods which adopt either recurrent regularization or cascade regularization.
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