

# Hybrid Cost Volume Regularization for Memory-efficient Multi-view Stereo Networks Qingtian Zhu<sup>1</sup>, Zizhuang Wei<sup>2</sup>, Zhongtao Wang<sup>1</sup>, Yisong Chen<sup>1</sup> and Guoping Wang<sup>1</sup> <sup>1</sup> Peking University <sup>2</sup> Huawei



## **Background & Motivation:**

- MVS (Multi-view Stereo):
- A key stage of image-based 3D reconstruction.
- To recover the dense representation with a series of calibrated images.
- Real applications:
  - Runtime efficiency: time & memory.
  - Flexibility: configurable hyperparameters.
  - Recurrent regularization: lightweight, configurable but slow.
  - Cascade regularization: fast, unconfigurable but heavyweight.



#### (a) Recurrent Regularization





## **Hybrid Regularization:**

- Overall architecture:
- Multi-stage coarse-to-fine depth sampling & regularization.
- Recurrent regularization for stage-wise regularization.
- A good & flexible trade-off between time & memory.
- Stage-wise recurrent regularization:
- 2D encoder-decoder CNN for each cost slice.
- LSTM RNN for context across cost slices.



### **Acknowledgements:**

The research is funded by:

- National Key Technology Research and Development Program of China
- Independent Research Project of Guangdong Laboratory (Zhuhai) of Southern Marine Science and Engineering