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Abstract

This paper addresses the task of video object segmentation in an unsupervised man-
ner. Prevailing solutions can be grouped into two categories: 1) two-stream approaches
combine both local motion and appearance information, which heavily rely on the quality
of optical flow and are not robust to occluded or static objects; 2) appearance matching
approaches utilize Siamese networks to learn the relation between two frames (generally
the first frame and the current frame), which lack robustness to the appearance variation
in long videos. Although recent attentive graph neural networks tackle the above two
limitations in an appearance matching manner by matching multiple frames at the same
time, the performance is inferior to the counterparts thus far. In this paper, we argue
that the performance of such attentive graph model is severely underestimated by cur-
rent limited designs, including both the node design and the global graph matching. To
this end, we develop a novel attentive graph-based model: Region-wise Global-graph
with Boundary-aware Local-learning (RGBL). Regarding the node design of the global
graph network, instead of taking the whole image as a frame-wise node, RGBL predicts
the foreground region in each frame and takes the corresponding regional features as
the nodal input to filter out the background noise, which incidentally mitigates the noisy
visual similarity among frames. Regarding the global graph matching, RGBL learns
more local saliency in individual frames, which incorporates the boundary information
to emphasize on the features along the foreground boundary for mask refinement in each
frame. Extensive experiments on three challenging benchmarks show that our RGBL
surpasses the state-of-the-arts with a large margin.

1 Introduction
Unsupervised video object segmentation (UVOS) aims to segment the most prominent and
distinct objects in a video sequence without any prior knowledge of the foreground objects.
Due to the lack of human intervention, this task faces significant challenges in effectively
tackling visual similarity, occlusions, and appearance variation. Early non-deep-learning
methods typically address this task by using handcrafted features, such as objectness [45],
motion boundary [31], saliency [39], and trajectories [29], without using any training data.
Recently, benefiting from the establishment of large datasets [32], more research efforts have
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Input GT MAT F2Net AGNN Ours

Figure 1: Results on DAVIS 2016. Compared to existing methods MAT (two-stream net-
works), F2Net (siamese appearance matching) and AGNN (graph-based appearance match-
ing), our method is more robust to object occlusion, visual similarity, appearance changing.
been devoted to solving this unsupervised task in deep learning frameworks. They gener-
ally learn more powerful object representations from large-scale training data, and adapt the
models to test videos without any annotations.

Existing deep learning frameworks can be grouped into two categories: 1) two-stream
networks [3, 9, 12, 15, 34, 46]. This class of methods fuse both appearance and motion
information via optical flows, which may fail to correctly infer the foreground when the
object is occluded or nearly static [35]. 2) appearance matching networks [2, 6, 14, 24,
28, 44]. These methods explore the correlation between two frames by simply learning
similarities between their pixel-wise embeddings without motion contexts. Since they all
adopt Siamese networks to match the current frame only with the first frame, they cannot
handle the appearance changing problem in long videos. Figure 1 shows that the above two
types of networks are less effective to track and distinguish the foreground objects well.

To avoid the above drawbacks, the attentive graph neural network (AGNN) [40] was pro-
posed to address UVOS in a pure appearance matching manner without using optical flows
like two-stream networks. Compared to the other appearance matching networks, AGNN
does not deploy Siamese networks to learn the limited relation between two frames. Instead,
it handles multiple frames at the same time, which alleviates the problem of appearance
drift in long videos. Specifically, the attentive graph neural network mainly consists of three
components: a node-wise feature extraction module takes the whole frame as input to learn
corresponding appearance representations; the global graph module explores the pixel-wise
relations among multiple frames; the readout module decodes the updated node-wise fea-
tures to predict the segmentation result for each frame. Although this GNN-based paradigm
attempts to eliminate the shortcomings in previous frameworks, the performance is still in-
ferior to that of other models thus far. We argue that the main reasons come from the limited
architecture in the following two aspects:
Node design: 1) Each video contains complex and diverse scenes, e.g., each frame may
contain visually similar objects in the background. Thus, distinguishing the foreground and
background objects is crucial to track the target object well. However, the existing node
design of the global graph takes the whole frame as input and results in mismatching to
similar objects in the background regions. 2) The target object generally appears only in
a small region of each frame. Therefore, instead of matching features of the whole frame
as in AGNN, matching the regions that only contain target objects is able to reduce useless
computation and produce more fine-grained results.
Global graph matching: 1) To determine the foreground object, there are two essential
properties: distinguishable in an individual frame (locally salient), and frequently appearing
throughout the video sequence (globally consistent). However, the global graph-based net-
work only focuses on finding the most frequently appearing object among frames, but fails
to explore the salient information in individual frames. 2) Since frame-wise global matching
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endeavors more to locate a possible area of the target object but suffers from the ambiguity of
boundary pixels, it is important to capture more local details in individual frames for refining
the mask boundary of the foreground object.

To this end, we propose a novel framework called Region-wise Global-graph with Boundary-
aware Local-learning (RGBL), with delicate node design and local graph refinement for
local-global representation learning, by rethinking and addressing the limitations of the ex-
isting AGNN model. For the node design, RGBL extracts regional features of each frame as
the nodal input so as to filter out the background noise. In particular, we first develop a fore-
ground localization branch to detect the region of the most salient object in each frame, and
then obtain corresponding regional features by deploying a regional attention to the features
of the entire frame. In this manner, our model not only locates possible regions of the target
object better, but also alleviates mismatching to similar objects in the background. For the
global graph matching, RGBL learns boundary-aware local saliency in each frame. Specif-
ically, we first extract the object boundary by developing a boundary prediction approach on
the extracted regional features, and then introduce a graph-based boundary attention to em-
phasize on the local features of boundary pixels during the pixel-wise feature matching, thus
enforcing accurate segmentation along the object boundary.

We demonstrate the effectiveness of RGBL on three challenging UVOS benchmarks:
DAVIS2016 [32], Youtube-Objects [33] and FBMS [30]. Experimental results show that our
RGBL model achieves the state-of-the-art performance over all benchmarks and metrics.

2 Related Work
UVOS is a video based task [17, 18, 20, 21, 22, 25, 26, 27]. Traditional methods require no
training data and typically utilize handcrafted features [5, 8, 19, 23, 31, 37, 43] for segmen-
tation. Recently, benefiting from the establishment of large datasets [32], many approaches
have been proposed to solve this task in deep learning frameworks to improve the perfor-
mance further. Tokmakov et al. [35] proposed a purely optical flow based network that dis-
cards appearance modelling and casts segmentation as foreground motion prediction, which
is not advantageous to static objects. To address this challenge, two-stream networks are
introduced to fuse both appearance and motion information [3, 9, 12, 15, 34, 46]. However,
these methods severely rely on the motion contexts in optical flow, thus suffering from the
high computation complexity and the deterioration in the quality of the optical flows. Tar-
geting this issue, recent approaches [2, 6, 14, 28, 44] tackle video object segmentation by
simply learning similarities between pixel-wise embeddings without motion contexts. How-
ever, a major drawback of these approaches is that they all utilize a Siamese network to learn
the correlation between two frames, which is thus not robust to the appearance drift in long
videos. Therefore, we extend the AGNN [40] discussed in the Introduction to exploit a uni-
fied graph attention network, which handles multiple frames at the same time for capturing
rich and inherent correlation within videos.

3 Method
We propose a novel local-global graph-based model RGBL for UVOS as illustrated in Fig-
ure 2, which mainly consists of three modules: Regional feature extraction: Given a video
sequence, instead of encoding the whole image, we propose the foreground localization to
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Figure 2: The overall architecture of our proposed RGBL model.
coarsely locate the region of the salient object in each frame and extract corresponding re-
gional features to filter out the background noise. Graph-based local-global learning: This
is designed to jointly capture the global correlations among frames and the local contexts
within individual frames. In particular, the local learning module introduces boundary atten-
tion to aggregate contexts with pixel-to-pixel similarities along the boundary. Further, the
global learning module takes regional features as nodal features and matches the appearance
of these regions. Readout module: At last, we deploy a readout module to fuse both local
and global features of each frame for more accurate segmentation.

3.1 Regional Feature Extraction
Given a video sequence I = {IIIt}T

t=1 of T frames, we leverage DeepLabV3 [1] as the main
backbone, which consists of five convolution blocks from ResNet50 [7] and an atrous spatial
pyramid pooling (ASPP) module, to extract effective frame-wise features. We denote the
extracted embeddings of {IIIt}T

t=1 as {FFF t}T
t=1, where FFF t ∈ RW×H×C. We first introduce a

foreground localization branch to locate the region of the primary object to filter out the
background noise. Then, the regional features are extracted by the Hadamard product of the
regional attention maps and the extracted frame-level embeddings.
Foreground localization. Considering the center point of an object can be taken as the
spatial prior [24, 42, 47], we attempt to firstly locate the center point of the most salient object
and then generate the Gauss map from the point to its surrounding for covering the whole
object. Particularly, we transform the point localization task into a Gauss-based heatmap
prediction task [36]. We propose a foreground localization branch as shown in Figure 3
(a). Specifically, this branch directly predicts the center point of the salient object without
resorting to any motion information, and introduces a two-level coarse-to-fine supervision
strategy. At each down-sampling path, we follow the down-sampling strategy of ResNet50
backbone to embed the image into different scales. At each up-sampling path, we upsample
the embeded features with bilinear interpolation and further employ a convolutional layer.
We also propose a cross-level feature aggregation strategy to propagate multi-scale features
from coarse-level to fine-level for information strengthening. As shown in Figure 3 (a), let
us denote the learned features in two-level down- and up-sampling modules of frame IIIt as
{DDDi, j

t }4
j=1,{UUU i, j

t }4
j=1, i = {1,2}, where i = 1 refers to the coarse-level and i = 2 refers to the

fine-level, and j refers to the layer of the network. The cross-level feature aggregation is:

(DDD2, j
t )′ = Conv2d(DDD1, j

t )+Conv2d(UUU1, j
t ), DDD2, j

t = (DDD2, j
t )′+Conv2d(DDD2, j−1

t ), (1)

where Conv2d(·) denotes the 2D convolutional layer. At last, we directly predict the coarse-
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Figure 3: (a) Foreground localization module. (b) Local context learning module.

and fine-level heatmap MMM1
t ,MMM

2
t on UUU1,1

t ,UUU2,1
t by applying a 3× 3 convolutional layer with

ReLU, followed by another 1×1 convolutional layer and a sigmoid function. We choose the
best center pppt = (xt ,yt) ∈ R2 from the fine-level heatmap MMM2

t with the maximum score, and
encode it into Gauss map GGGt ∈ RW×H [24, 36] to cover the foreground region.
Regional features. We deploy a regional attention map AAAt ∈RW×H to the embedding of the
whole frame FFF t ∈ RW×H×C. AAAt is obtained by:

AAAt(x,y) =
{

1, if GGGt(x,y)> 0
0, else . (2)

where (x,y) ∈ RW×H , and the regional feature F̂FF t is generated by F̂FF t = AAAt ⊙FFF t .

3.2 Graph-based Local-Global Learning
Our RGBL considers both local and global contexts to jointly learn the local saliency and
global consistency. For the local context learning, RGBL first estimates the boundary of
the foreground object in each individual frame, and then employs boundary-aware attention
to emphasize on features of boundary pixels during the pixel-wise graph convolution for
boundary refinement. For the global context learning, RGBL takes the salient region of each
frame as a node to build a global graph for matching.
Local context learning. We first estimate the boundary information. After obtaining the
generated Gauss map GGGt and the down-sampling features {DDD1, j

t }4
j=1 of each individual frame

IIIt , we acquire their regional features {D̂DD
1, j
t }4

j=1 as operated in Eq. (2). As shown in Figure
3 (b), we feed these features into a boundary estimation branch with a multi-scale context
aggregation strategy to output the estimated boundary BBBt .

Secondly, given the regional feature F̂FF t and the predicted boundary map BBBt , we introduce
a boundary aware attention module to emphasize on the features of boundary pixels:

PPPt = Softmax((Conv2d(F̂FF t)⊙BBBt)(Conv2d(F̂FF t))
⊤), (3)

where Conv2d(·) is utilized to reduce the feature dimension. The Hadamard product ⊙
essentially assigns a weight to the feature of each pixel, with larger weights to features of
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boundary pixels. The matrix multiplication captures the feature similarity between boundary
pixels and all pixels of the frame, and the softmax function is for normalization. Eq. (3) leads
to the attention map PPPt ∈ R(W×H)×(W×H). More details are presented in Figure 3 (b). With
the acquired attention map PPPt , we aggregate pixels with similar features as the boundary
pixels to bridge the connection between all pixels and the boundary pixels by:

(F̂FF t)
′ = PPPt(Conv2d(F̂FF t)). (4)

Next, to explore the connectivity between the boundary pixels, we propose a boundary-
aware local graph to propagate information across these pixels to learn their higher-level
semantic relations. Each pixel is taken as a node, and we fully connect all boundary pixels
to build the local graph. Specifically, we utilize the intra-attention mechanism [38, 41] to
calculate the response at one pixel position by attending to the other positions, and employ a
single-layer graph convolution network [10] to reason their correlations as:

EEEt = softmax(((F̂FF t)
′WWW 1)((F̂FF t)

′WWW 2)
⊤), (F̂FF t)

′′ = ReLU[(III −EEEt)(F̂FF t)
′WWW 3], (5)

where WWW 1,WWW 2,WWW 3 are learnable weights.
At last, we refine the local pixel features of the foreground based on the updated boundary-

aware features, and take the sum of the refined and the original features as the output:

F̃FF t = Conv2d(PPP⊤
t (F̂FF t)

′′)+ F̂FF t . (6)

Global context learning. We build a global graph among multiple video frames to capture
the global correlations. Different from the AGNN [40] where the feature of each frame is
taken as the signal on a node, we take the regional features F̂FF t as the signal over a node so
as to filter out the background noise and alleviate the mismatching problem. We initialize
the node features as HHH0

t = F̂FF t , and denote the final updated features as HHHK
t , where K is the

number of the global graph network layers.

3.3 Readout Module
Having captured both the local boundary details and global object consistency, we concate-
nate the local refined features F̃FF t and the global graph node feature HHHK

t , and feed the com-
bined feature into a readout module for segmenting the final mask result RRRt (as shown in
Figure 2). To preserve the spatial information, our readout module is composed of three
convolution layers and a sigmoid function.

3.4 Training Loss
Given a video sequence, for each frame IIIt , our RGBL predicts the heatmaps MMM1

t ,MMM
2
t of center

points at both the coarse- and fine-level, an estimated boundary BBBt and a mask result RRRt . For
the point heatmap prediction, we apply an element-wise focal loss [16] on each predicted
heatmap MMMi

t and the ground-truth Gauss map GGGgt
t as:

Li
f = ∑

(x,y)

{
(1−Mi

t,(x,y))
α log(Mi

t,(x,y)), if Ggt
t,(x,y) = 1

(1−Ggt
t,(x,y))

β (Mi
t,(x,y))

α log(1−Mi
t,(x,y)), o.w.

(7)

where i ∈ {1,2}, Mi
t,(x,y) is the score at location (x,y) in the predicted heatmap MMMi

t , and we
set α as 2 and β as 4 following the default setting in [11]. For the boundary estimation, we
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Table 1: Quantitative results of UVOS methods on the DAVIS2016 validation set.
Method FSEG LVO ARP PDB LSMO MoA EpO AGS AGNN COS AGNN* AnDiff MAT F2Net RGBL

J&FMean↑ 68.0 74.0 73.4 75.9 77.1 77.3 78.1 78.6 79.9 80.0 80.5 81.1 81.5 83.7 85.6

J
Mean↑ 70.7 75.9 76.2 77.2 78.2 77.2 80.6 79.7 80.7 80.5 81.3 81.7 82.4 83.1 85.2
Recall↑ 83.5 89.1 91.1 90.1 89.1 87.8 95.2 91.1 94.0 93.1 93.1 90.9 94.5 95.7 96.8
Decay↓ 1.5 0.0 7.0 0.9 4.1 5.0 2.2 1.9 0.0 4.4 4.4 2.2 5.5 0.0 0.0

F
Mean↑ 65.3 72.1 70.6 74.5 75.9 77.4 75.5 77.4 79.1 79.5 79.7 80.5 80.7 84.4 86.1
Recall↑ 73.8 83.4 83.5 84.4 84.7 84.4 87.9 85.8 90.5 89.5 88.5 85.1 90.2 92.3 93.9
Decay↓ 1.8 1.3 7.9 -0.2 3.5 3.3 2.4 1.6 0.0 5.0 5.1 0.6 4.5 0.8 0.1

T Mean↓ 32.8 26.5 39.3 29.1 21.2 27.9 19.3 26.7 33.7 18.4 33.7 21.4 21.6 20.9 28.8

treat it as pixel-wise binary classification and employ the binary cross-entropy loss on the
predicted boundary BBBt and ground truth BBBgt

t as:

Lb =− ∑
(x,y)

Bgt
t,(x,y)log(Bt,(x,y))+(1−Bgt

t,(x,y))log(1−Bt,(x,y)), (8)

where Bt,(x,y) denotes the location (x,y) in the boundary BBBt . For the segmentation result, we
deploy the binary cross-entropy loss on the predicted mask RRRt and the ground truth RRRgt

t as:

Ls =− ∑
(x,y)

Rgt
t,(x,y)log(Rt,(x,y))+(1−Rgt

t,(x,y))log(1−Rt,(x,y)). (9)

Finally, our RGBL is trained end-to-end from scratch using the multi-task loss L = λ1Ls +

λ2Lb+
λ3
2 ∑

2
i=1Li

f where λ1, λ2, λ3 are parameters to strike a balance among the three terms.

4 Experiments

4.1 Datasets and Metrics
DAVIS2016. This dataset is a challenging video object segmentation dataset [32] which
consists of 50 videos in total (30 for training and 20 for validation) with pixel-wise annota-
tions for every frame. Three evaluation criteria are used following [32]: region similarity J ,
boundary accuracy F , and time stability T .
Youtube-Objects. It is a large dataset [33] of 126 web videos with 10 object categories and
more than 20,000 frames. Following the common protocol, we use the region similarity J
to measure the segmentation performance.
FBMS. This dataset [30] is comprised of 59 video sequences (29 training videos and 30 test
videos). As in previous works, we use region similarity J as the metric.

4.2 Training Details
To obtain multiple video frames as input, we leverage a random sampling strategy to train
our RGBL model. Specifically, we split each training video with a total of T frames into
T ′ segments (T ′ < T ) and randomly select one frame from each segment. Then we feed
the T ′ sampled frames into a batch and train the model. Such a sampling strategy provides
robustness to variations, and the diversity among the samples enables our model to better
capture the underlying relationships and improve its generalizability. The size of each RGB
frame is 473× 473× 3, the input frame number is T ′ = 7 and the number of global graph
network layers is K = 3. We set λ1 = λ2 = λ3 = 1. The entire network is trained using the
SGD optimizer with an initial learning rate of 2.5× 10−4. We set the batchsize as 16. All
the experiments are conducted using 4 V100 GPUs on a server. The overall training time is
about 12 hours, and it takes about 0.14s with one image in a forward pass.
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Table 2: Fair comparison with RTNet [34] on different backbone models on the DAVIS2016.

Method Backbone
J&F J F
Mean↑ Mean↑ Recall↑ Mean↑ Recall↑

RGBL ResNet50 85.6 85.2 96.8 86.1 93.9
RTNet ResNet34 84.1 84.8 95.8 83.5 93.1
RGBL ResNet34 85.3 85.0 96.4 85.7 93.6
RTNet ResNet101 85.1 85.6 96.1 84.7 93.8
RGBL ResNet101 86.3 86.1 97.3 86.6 94.5

4.3 Quantitative Performance
Evaluation on DAVIS2016. We compare our RGBL with the top performing UVOS meth-
ods in the public leaderboard on the DAVIS2016 dataset, as shown in Table 1. Our RGBL
outperforms all the reported methods over most metrics. Compared with the state-of-the-
art method F2Net [24], our model achieves improvement of 1.9 in terms of J&F Mean.
Specifically, we obtain gains of 2.1 and 1.7 on J Mean and F Mean, respectively. Com-
pared to appearance matching methods COS [28] and AnDiff [44], our RGBL handles multi-
ple frames at the same time which learns more robust global consistency, thus outperforming
them both over J Mean and F Mean by a large margin. Compared to methods like MAT [46]
and EPO [4] which utilize both appearance information and motion cues, our model outper-
forms them by only utilizing appearance information. Compared to the original graph-based
method AGNN [40] which often fails to distinguish visually similar backgrounds and lacks
capturing local context, our novel node design with regional features and the boundary-aware
local context learning lead to significant improvements. We further implement our RGBL
with different backbone models (i.e., ResNet34 and ResNet101) to fairly compare with the
RTNet [34]. As shown in Table 2, we achieve better performance than RTNet.
Evaluation on Youtube-Objects. Table 3 lists the results of all compared methods for dif-
ferent categories on the Youtube-Objects dataset. Our approach brings improvement of 1.8
on Mean J than the state-of-the-art method F2Net by a large margin. It is worth noting that
we outperform all compared methods on almost all categories. There are three main reasons:
First, for optical guided methods MAT, FSEG [9] and LVO [35], sequences in the Airplane
and Boat categories contain objects that have large appearance variation or move slowly, re-
sulting in inaccurate estimation of optical flow. Compared to them, our appearance matching
based framework handles these scenarios well. Second, compared to Siamese network based
appearance matching methods F2Net and COS, our graph-based model matches multiple
frames at the same time, which learns more robust global consistency. Third, compared to
the graph-based method AGNN, our foreground localization and local graph alleviate the
mismatching problem and refine the object boundary in individual frames.
Evaluation on FBMS. For completeness, we also evaluate our method on FBMS dataset.
As shown in Table 5, our RGBL produces the best result over the evaluation metric Mean
J , which outperforms the state-of-the-art by 1.2. Since lots of foreground objects in FBMS
share similar appearance with the background, our foreground localization branch helps to
filter out the visually similar background for better segmentation.

4.4 Ablation Study
We conduct ablation studies on the DAVIS2016 dataset as shown in Table 4, where the
baseline model is the original attentive graph neural network AGNN.
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Table 3: Quantitative results on Youtube-Objects.
Method FSEG LVO AGNN COS AMC AGNN* MAT F2Net RGBL
Airplane 81.7 86.2 81.1 81.1 78.9 86.0 72.9 85.8 87.0

Bird 63.8 81.0 75.9 75.7 80.9 75.7 77.5 82.8 84.3
Boat 72.3 68.5 70.7 71.3 67.4 68.7 66.9 81.9 83.2
Car 74.9 69.3 78.1 77.6 82.0 82.4 79.0 81.4 81.4
Cat 68.4 58.8 67.9 66.5 69.0 65.9 73.7 70.2 72.8
Cow 68.0 68.5 69.7 69.8 69.6 70.5 67.4 71.0 73.2
Dog 69.4 61.7 77.4 76.8 75.8 77.1 75.9 75.8 76.5

Horse 60.4 53.9 67.3 67.4 63.0 72.2 63.2 75.4 77.1
Motorbike 62.7 60.8 68.3 67.7 63.4 63.8 62.6 71.8 73.6

Train 62.2 66.3 47.8 46.8 57.8 47.8 51.0 59.6 64.9
MeanJ ↑ 68.4 67.5 70.8 70.5 71.1 71.4 69.0 75.6 77.4

Table 4: Overall ablation studies.
Network Variant Mean J ↑ △J Mean F ↑ △F
Baseline (AGNN) 80.7 -4.5 79.1 -7.0

Node design
Baseline + CCP 81.9 -3.3 82.0 -4.1
Baseline + CFCP (FL) 83.0 -2.2 83.5 -2.6

Local graph network
Baseline + FL + BE 83.6 -1.6 84.3 -1.8
Baseline + FL + BE&BA 85.2 - 86.1 -
Graph layer = 1 85.2 - 86.1 -
Graph layer = 2 84.5 -0.7 85.7 -0.4

Other Variations
Input frames T ′ = 3 83.2 - 2.0 83.7 -2.4
Input frames T ′ = 5 84.3 -0.9 85.0 -1.1
Input frames T ′ = 7 85.2 - 86.1 -
Input frames T ′ = 9 85.2 - 86.1 -
Global graph K = 1 83.9 -1.3 84.4 -1.7
Global graph K = 3 85.2 - 86.1 -
Global graph K = 5 84.7 -0.5 85.8 -0.3

Table 5: Quantitative results on FBMS.
Method APR MSTP FSEG IET PDB COS MAT AMC F2Net RGBL

MeanJ ↑ 59.8 60.8 68.4 71.9 74.0 75.6 76.1 76.5 77.5 78.7

Table 6: Complexity comparison on DAVIS2016. “Speed" denotes the average time to seg-
ment one image in a forward pass.

Metric AGNN MAT F2Net Ours
J&F 79.9 81.5 83.7 85.6

Speed (s) 0.12 0.05 0.10 0.14
Model Size (M) 315 506 432 468

Studies on the node design. We first investigate the effectiveness of our node design, which
relies on the coarse-to-fine center prediction (CFCP) in the foreground localization (FL)
branch for filtering out the background features in each frame. As shown in Table 4, compare
to the baseline model, CFCP (FL) brings the improvement of 2.3 on J and 4.4 on F , which
indicates the effectiveness of our regional node features for filtering out the visually similar
objects in the background. Compared to general coarse-level center prediction (CCP), our
coarse-to-fine strategy performs better, demonstrating its effectiveness.
Studies on the local graph network. We also investigate the importance of our local graph
network. Specifically, we develop a boundary estimation (BE) module to enforce the back-
bone model to extract the crucial semantic features. We also devise a boundary attention
(BA) module to refine the local contexts in each frame. As shown in Table 4, both boundary
estimation (BE) and boundary attention (BA) modules contribute a lot to the final perfor-
mance. We observe that a single-layer graph is enough, more layers will result in over-
smoothing [13].
Studies on other variations. To evaluate the impact of the number of input frames T ′, we
report the performance with different T ′. Our model achieves the best result with T ′ = 7.
For the number of global graph layers K, the performance converges at K = 3.
Studies on model complexity. We compare the model complexity in Table 6. Our speed is
comparable to AGNN with a reasonable model size.

4.5 Qualitative Results
Visualization on the foreground localization. To investigate the performance of our pro-
posed foreground localization, we provide some visualization results on the generated heatmaps
of center points. As shown in Figure 5 (a), there are four challenging sequences in which
the surroundings have similar appearance to the foreground object ("breakdance" and "dog")
or there exists large appearance drift ("parkour" and "scooter-black"). Without using any
motion history, our foreground localization branch achieves better performance than F2Net
by only extracting individual semantic features. This demonstrates that our coarse-to-fine
strategy effectively captures the salient information to locate the target object.
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Figure 4: Qualitative results on DAVIS2016, FBMS and Youtube-Objects datasets.
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Figure 5: (a) Visualization of center point heatmaps on the first frames in videos. (b) Visual-
ization of our boundary estimation and mask prediction. The model with local learning (w/
Boundary) obtains better boundary details of the foreground object.

Visualization on the boundary estimation. To evaluate the performance of our proposed
boundary-aware local context learning, we demonstrate the visual results on two sequences
in Figure 5 (b). We see that our boundary estimation module is able to estimate the object
boundary well based on the regional features. Further, as shown in Figure 5 (b), without
boundary learning, the model (w/o Boundary) lacks local contexts within individual frames
for exploring the local saliency, while learning the boundary information (w/ Boundary)
leads to much better prediction of the mask with accurate contours.
Visualization on the mask results. Figure 4 depicts sample results for representative se-
quences from the three datasets. The dance-twirl sequence from DAVIS-16 contains many
challenging factors, such as object deformation, motion blur and background visual similar-
ity. We see that our method is robust to these challenges and delineates the target with accu-
rate boundaries. The effectiveness is further validated in people1 from FBMS and car0009
from Youtube-Objects, in which the target suffers from large-scale variations.

5 Conclusion

In this paper, we thoroughly analyze the existing attentive graph neural network based
method for UVOS, especially the drawbacks of the the current AGNN model. Based on the
analysis, we propose a novel local-global graph-based model RGBL for unsupervised video
object segmentation (UVOS), which addresses major limitations in existing graph neural
network based methods. On the one hand, the RGBL model localizes the center point of
the salient object with a coarse-to-fine strategy and extracts the corresponding regional fea-
tures in each frame to filter out the background noise. On the other hand, RGBL not only
takes regional features as signals on nodes to build a global graph, but also emphasizes on
the crucial boundary information in individual frames by learning boundary-aware contexts.
Extensive experiments on three datasets demonstrate the superiority of our RGBL model.
Future works include developing the RGBL model for the multi-object UVOS task.
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