Rethinking Graph Neural Networks for Unsupervised Video Object Segmentation
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ABSTRACT METHOD Results
This paper addresses the task of video object segmentation in an unsupervised manner. ® (Quantitative comparison
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Prevailing solutions can be grouped into two categories: 1) two-stream approaches combine

both local motion and appearance information, which heavily rely on the quality of optical flow T T Table 1: Quantitative results of UVOS methods on the DAVIS2016 validation set.
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current frame), which lack robustness to the appearance variation in long videos. Although
recent attentive graph neural networks tackle the above two limitations in an appearance
matching manner by matching multiple frames at the same time, the performance is inferior to
the counterparts thus far.
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® Node design: 1) Each video contains complex and diverse scenes, e.g., each frame may e aine T Mean) || 328 265 393 29.1 212 279 193 267 33.7 184 337 214 216 209 288
contain visually similar objects in the background. Thus, distinguishing the foreground and . ' | ——————— , , , ,
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design of the global graph takes the whole frame as input and results in mismatching to
similar objects in the background regions. 2) The target object generally appears only in a
small region of each frame. Therefore, instead of matching features of the whole frame as
iIn AGNN, matching the regions that only contain target objects is able to reduce useless
computation and produce more fine-grained results.

® Global graph matching: 1) To determine the foreground object, there are two essential 51—+ Conv X3 | »{ Upsampl
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Figure 2: The overall architecture of our proposed RGBL model. Method | Backbone |\ = TN eant Recallt | MeanT Recallf

RGBL | ResNet50 85.6 85.2 96.8 86.1 93.9

RTNet | ResNet34 84.1 84.8 95.8 83.5 93.1
RGBL | ResNet34 85.3 85.0 96.4 85.7 93.6

RTNet | ResNetlO] 85.1 85.6 96.1 84.7 93.8
RGBL | ResNetl0] 86.3 86.1 91.3 86.6 94.5
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Table 3: Quantitative results on Youtube-Objects.
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To this end, we propose a novel framework called Region-wise Global-graph with Boundary- | B ' e o
aware Local-learning (RGBL), with delicate node design and local graph refinement for local- . (a) o (6) . Table 5: Quantitative results on FBMS.
Figure 3: (a) Foreground localization module. (b) Local context learning module. Method [[APR MSTP FSEG IET PDB COS MAT AMC F2Net RGBL

global representation learning, by rethinking and addressing the limitations of the existing
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AGNN model. For the node design, RGBL extracts regional features of each frame as the

nodal input so as to filter out the background noise. In particular, we first develop a fore- Visualization _
ground localization branch to detect the region of the most salient object in each frame, and ® Ablation study Table 4: Overall ablation studies.
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