
XUE, LI, LEUTENEGGER, STUECKLER: EVENT-BASED NON-RIGID RECONSTRUCTION 1

Event-based Non-Rigid Reconstruction
from Contours
Yuxuan Xue1,2

yuxuan.xue@tuebingen.mpg.de

Haolong Li1

haolong.li@tuebingen.mpg.de

Stefan Leutenegger2

stefan.leutenegger@tum.de

Joerg Stueckler1

joerg.stueckler@tuebingen.mpg.de

1 Max Planck Institute
for Intelligent Systems,
Tuebingen, Germany

2 Technical University
of Munich,
Munich, Germany

Abstract

Visual reconstruction of fast non-rigid object deformations over time is a challenge
for conventional frame-based cameras. In this paper, we propose a novel approach for
reconstructing such deformations using measurements from event-based cameras. Under
the assumption of a static background, where all events are generated by the motion, our
approach estimates the deformation of objects from events generated at the object con-
tour in a probabilistic optimization framework. It associates events to mesh faces on the
contour and maximizes the alignment of the line of sight through the event pixel with the
associated face. In experiments on synthetic and real data, we demonstrate the advan-
tages of our method over state-of-the-art optimization and learning-based approaches for
reconstructing the motion of human hands.

1 Introduction
Event cameras offer a considerable number of advantages in computer vision tasks over
conventional cameras, such as low latency, high dynamic range and virtually no motion
blur. Unlike conventional frame-based cameras that capture images at a fixed rate, event
cameras asynchronously measure per-pixel brightness change, and output a stream of events
that encode the spatio-temporal coordinates of the brightness change and its polarity. While
several approaches for event-based cameras have been proposed for optical flow estimation
or simultaneous localization and mapping [6], only little work has been devoted to non-rigid
reconstruction [15, 23].

In this paper, we present a novel non-rigid reconstruction approach for event-based cam-
eras. Our algorithm takes event streams as input and outputs the reconstructed object pose
parameters, assuming a low-dimensional parameterized shape template of a deforming ob-
ject (i.e. hand and body model). We propose a novel optimization-based method based
on expectation maximization (EM). Our method models event measurements at contours
in a probabilistic way to estimate the association likelihood of events to mesh faces and
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Figure 1: Our approach reconstructs non-rigid deformation states of objects from event
streams of event-based cameras within an expectation maximization (EM) framework. In
the E-step, the association probability of events to contour mesh faces is estimated from
the contour measurement likelihood. In the M-step, the expected value of the measurement
likelihood over the the association probability is maximized for pose parameter θ ∗.

maximize the measurement likelihood. The approach is evaluated on synthetic and real
data sequences, and improvements over the state-of-the-art optimization and learning-based
methods for hand reconstruction are demonstrated. For generating the sequences, we de-
velop a novel event-based camera simulator for non-rigid deforming objects. Details of our
proposed simulator and a comparison with the state-of-the-art event-based camera simula-
tors [15, 21, 23] can be found in the supplementary material.

2 Related Work
A multitude of approaches has been proposed in recent years for scene reconstruction and
rigid tracking using event-based cameras [8, 19, 27]. Only recently, approaches have been
presented that track 3D object motion [10]. One can distinguish state-of-the-art approaches
into approaches that accumulate disparity space images based on multi-view stereo [20],
maximize contrast of reprojected events in a reference frame [5, 26], or apply a generative
event measurement model derived from the brightness constancy assumption [8].

Reconstruction and tracking of non-rigid shapes is a challenging problem in computer
vision. For monocular frame-based cameras, several approaches have been proposed. They
can be classified into methods that align shape templates (e.g. [17, 24, 30]) or approaches that
use regularizing assumptions such as low-rank approximations to achieve non-rigid structure
from motion (e.g. [3, 4, 7, 9, 25]). RGB-D cameras simplify the task due to the availability
of dense depth for which several methods have been proposed recently (e.g. [2, 16]).

Non-rigid reconstruction and tracking with event-based cameras has only recently at-
tained attention in the computer vision community. Nehvi et al. [15] propose a differentiable
event stream simulator by subtracting renderings of parametrized hand models. The paper
demonstrates the use of the simulator for non-rigid motion tracking from event streams by
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optimization. Rudnev et al. [23] train a deep neural network on synthetic event streams to es-
timate the deformation of a MANO [22] hand model. To input the event data into the neural
network, they propose to represent the data in local time windows. Different to these meth-
ods, we propose geometric contour alignment in a probabilistic optimization framework.

Some research in recent years has been devoted to event stream simulation [15, 21, 23].
We propose an event data simulator which generates synthetic events and other data modal-
ities of human body motion, especially of hand deformation by simulating events with an
adaptive sampling rate.

3 Event-based Non-Rigid Reconstruction from Contours
Our event-based method tracks parameterized non-rigid objects assuming static background.
Typically, for deforming objects with low texture such as hands or human bodies, the major-
ity of events is generated at the contour between the object and the background. Hence, we
formulate the reconstruction problem in a probabilistic way using a contour measurement
model for the events. Assuming a known initial state, we optimize for the pose parameters
of the parametric object model incrementally from the event stream.

3.1 Expectation Maximization Framework
We formulate the 4D reconstruction problem as maximum-a-posteriori estimation of the
model parameters θ given the event observations x from the event camera

θ
∗ = argmax

θ

ln p(x | θ)+ ln p(θ), (1)

where p(θ) is a constant-velocity prior on θ . The analytical formulation of the likelihood is
difficult because there is no observable relation between measurement x and model parame-
ters θ available. Since our background is static and the objects are textureless, most of the
event measurements are generated at the contour of the deforming object. We thus assume
that each event corresponds to a point on the observed contour of the object. We introduce
the latent variable zi = j which represents the association between the event xi and a mesh
face of the object with index j.

We use the expectation-maximization (EM) framework to find the model parameters with
the latent association,

θ
∗ = argmax

θ

N

∑
i=1

ln
F

∑
j=1

p(xi,zi = j | θ)+ ln p(θ), (2)

where N is the number of aggregated events in an event buffer and F is the number of mesh
faces. In practice, we aggregate a fixed number of events into an event buffer, assume that
the event observations are independent from each other, and optimize over this event buffer.
The optimization of the next event buffer is initialized with the parameters from the previous
buffer. In the E-step, we update a probabilistic belief on the latent association variables using
a variational approximation given the current estimate of parameters θ from the previous
iteration,

q(zi)← argmax
q(zi)

F

∑
j=1

q(zi = j) ln
p(xi,zi = j | θ)

q(zi = j)
. (3)
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The optimal solution of this step is q(zi) = p(zi | xi,θ). In the M-step, the parameters are
updated by maximizing the expected log posterior with the probabilistic, i.e. soft, data asso-
ciation from the E-step,

θ ← argmax
θ

N

∑
i=1

F

∑
j=1

q(zi = j) ln p(xi,zi = j | θ)+ ln p(θ). (4)

The posterior includes terms for the expected value of the measurement likelihood under the
association probability distribution and a prior term on the parameters. In the following, we
explain the concrete form of the EM steps in our approach in detail.

3.2 Data Association
Ideally we can use mesh rasterization to find the association of pixels to all mesh faces that
intersect the line of sight through each pixel. Due to limits in the image resolution, initial
inaccuracies of the shape parameters during optimization, and complex mesh topologies
which allow for multiple layers being intersected by the line of sight, the rasterization often
misses the correct association of contour mesh faces with event pixels. For instance, if the
shape estimate is off, the contour mesh face could be observed a few pixels off the actual
event location. If fingers are bent in front of the palm, events generated on the contour of the
finger might hit palm mesh faces, but miss mesh faces on the finger which generate events.

The EM-framework requires to quantify the probability of associating a mesh face with
an event. Intuitively, the closer the mesh face to the event’s unprojection ray, the higher the
probability it causes the event. Inspired by SoftRasterizer [12], we formulate the contour
measurement likelihood as

p(xi | zi = j,θ) ∝ σ

(
δ

i
j

d2
lat(i, j)

α

)
exp

(
−

dlong(i, j)
β

)
exp

(
−

rang(i, j)
γ

)
, (5)

with lateral distance dlat, longitudinal distance dlong and angular error rang between the line of
sight through event xi and the mesh face f j, and sigmoid function σ . The angular error rang
measures the deviation of the direction of the line of sight from being orthogonal to the
normal of the mesh face. Hyperparameters α , β , and γ are used to control the sharpness of
the individual terms for the probability distribution. The lateral distance dlat is the distance
between the line of sight and the closest edge of the mesh face. The sign indicator is defined
as δ i

j :=
{
+1, if xi ∈ f j;−1, otherwise

}
. We use a maximal lateral distance threshold to

reject outlier events due to noise and unmodelled effects. As the longitudinal distance dlong,
we determine the projected distance between the event pixel and the mesh face center on
the line of sight. As sketched above, the line of sight may intersect multiple mesh faces
on the deformed object. The longitudinal distance gives higher likelihood to the mesh face
closer to the camera. The line of sight through an event caused by the object contour should
be approximately orthogonal to the normal of the corresponding mesh face. The angular
error rang is thus computed by the absolute dot product between the unit direction vector of
the line of sight and the face normal.

3.3 E- and M-Steps
In the E-step, the association probability is calculated from the measurement likelihood,

p(zi = j | xi,θ) =
p(xi | zi = j,θ)p(zi = j | θ)

∑ j′ p(xi | zi = j′,θ)p(zi = j′ | θ)
=

p(xi | zi = j,θ)
∑ j′ p(xi | zi = j′,θ)

, (6)
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where we assume that the prior probability of the latent variable is uniform. For the M-step,
we evaluate the measurement likelihood as

p(xi,zi = j | θ) = p(xi | zi = j,θ)p(zi = j | θ) ∝ σ

(
δ

i
j

d2
lat(i, j)

α

)
exp

(
−

rang(i, j)
γ

)
. (7)

Here we do not include the longitudinal distance term. Ideally, this term should assign a
constant probability to mesh faces on the same occlusion layer. Notably the term does not
depend continuously on the shape parameters. If included in the M-step, our approximative
Gaussian term for the E-step would falsely incentivize shape parameters for which the mesh
intersects the line of sight closer to camera. The angular error term in M-step encourages
the alignment of events with contours. For scenes with many outlier events (e.g. textured
objects), we choose a larger value of γ . The prior term for the M-step is a constant velocity

prior on the parameters, i.e., ln p(θ) = k‖v− v′‖2
2, v = θ−θ

′

∆t , where θ
′

and v′ are the
parameters and velocity for the previous event buffer and ∆t is the time difference between
the two event buffers. We alternate E-step and M-step until convergence. When a new event
buffer is available, we initialize θ based on the current estimate of v.

4 Experiments
We evaluate and demonstrate our event-based non-rigid reconstruction approach on synthetic
and real sequences using MANO and SMPL-X object models and involving random motions
and various background textures. We provide qualitative and quantitative results, comparing
with state-of-the-art baselines. An evaluation of the robustness against noisy events and
initial poses, an ablation study for the terms in our E- and M-steps, and results for a hard-
EM variant are given in the supplementary material. Please also refer to the supplemental
video for qualitative results.

4.1 Experiment Setup
Implementation details To compensate between the accuracy and the efficiency, we ac-
cumulate events in event buffers and optimize a single set of shape parameters for the whole
event buffer. Similar to [27], we accumulate buffers with a fixed number of events, therefore
choosing their temporal length adaptively. For our real captured data sequences, we accu-
mulate 100 events per buffer. For synthetic data generated by our simulator, we stack 300
events into each buffer. Our simulator simulates the Prophesee camera. We use the pinhole
camera model for the event camera and assume the camera intrinsics are calibrated. We
have several hyperparameters in our framework. Please refer to the supplementary file for
the tuning process of hyperparameters. Our algorithm optimizes for the pose parameters of
the MANO hand model [22] or the SMPL body model [13, 18]. In case of the hand model,
the pose parameters are in PCA space and the MANO modelling approach reconstructs the
vertex offsets, which are used together with the canonical pose vertices to generate the posed
mesh. For the SMPL model, the pose parameters are the orientation parameters and Linear
Blend Skinning (LBS) is used to recover the posed mesh.

Datasets We generate synthetic datasets of sequences with three types of different objects,
namely the MANO [22] hand (Fig. 3a), the SMPL-X [13, 18] hand (Fig. 4a), and the
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Scenario Method mean MPJPE (mm) median MPJPE (mm)

MANO hand Nehvi et al. [15] 11.61 10.85
Ours 4.52 4.27

SMPL-X hand Rudnev et al. [23] 11.88 10.73
Ours 1.11 0.76

SMPL-X arm & hand Ours 15.39 3.93

Table 1: Results on synthetic sequences of different objects

combined SMPL-X [13, 18] arm and hand (5a). MANO hand sequences are generated with
a single hand mesh at a fixed position and orientation. We vary the full 45-dimensional
pose parameter space to generate varying hand poses. For SMPL-X hand sequences, the
hand is attached to the whole human body which prevents observing the inside of the hand
mesh. We vary the first 6 principal component pose parameters to simulate time-varying
and realistic hand deformations. In the SMPL-X arm and hand sequences, we synthesize
the arm motion by the 3-DoF rotation of the elbow joint and the hand motion by the 6
principal pose parameters. We use a custom event simulator with adaptive sampling rate to
generate the synthetic sequences for the different object models. A detailed description of
the event simulator can be found in the supplementary material. We simulate a Prophesee
camera with the image size of 1280× 720. The event contrast threshold is 0.5. For each
sequence, the background image is randomly chosen from a texture-rich indoor scene in the
YCB video dataset [29]. To introduce noise into the event generation process, we sample the
contrast threshold of each pixel from a Gaussian distribution with standard deviation 0.0004.
The threshold of salt-and-pepper noise is 10−5. For further details on the noise generation
process in our simulator, please refer to the supplementary material.

Evaluation metrics For the synthetic data, 3D ground-truth positions for all joints and
mesh vertices as well as pose parameters are known. We evaluate using the Mean Per Joint
Position Error (MPJPE [28]), the percentage of correct 3D Joints (3D-PCK [14]), and the
area under the PCK-curve (AUC [14]) with thresholds ranging from 0 to 50 mm. For hand
sequences, we consider the 15 hand skeleton joints. For arm and hand sequences, only the
forearm and the hand have motion. Thus, we consider one wrist joint and 15 hand joints.

4.2 Quantitative Evaluation
We compare our approach quantitatively with the state-of-the-art event-based non-rigid ob-
ject reconstruction methods: Nehvi’s optimization-based approach [15] evaluates using the
MANO hand model, while Rudnev’s approach [23] is designed for the SMPL-X hand model.
To the best of our knowledge, previous event-based reconstruction approaches have not been
demonstrated on combined arm and hand motion of a SMPL-X model. Hence, we only
provide results for our method on these sequences.

For synthetic MANO hand sequences, we use the MANO [22] hand model as the para-
metric mesh template. In experiments, we initialize the optimized parameters with the
ground-truth pose parameters and evaluate, how well the approach can keep track of the
hand deformation. Our approach reconstructs the 45-dimensional pose parameter. We re-
port quantitative results MPJPE and AUC on these sequences in Table 1. We also compare
our method to the state-of-the-art event-based hand tracking approach [15] for the MANO

Citation
Citation
{Nehvi, Golyanik, Mueller, Seidel, Elgharib, and Theobalt} 2021

Citation
Citation
{Rudnev, Golyanik, Wang, Seidel, Mueller, Elgharib, and Theobalt} 2021

Citation
Citation
{Loper, Mahmood, Romero, Pons-Moll, and Black} 2015

Citation
Citation
{Pavlakos, Choutas, Ghorbani, Bolkart, Osman, Tzionas, and Black} 2019

Citation
Citation
{Xiang, Schmidt, Narayanan, and Fox} 2018

Citation
Citation
{von Marcard, Henschel, Black, Rosenhahn, and Pons-Moll} 2018

Citation
Citation
{Mehta, Rhodin, Casas, Fua, Sotnychenko, Xu, and Theobalt} 2017

Citation
Citation
{Mehta, Rhodin, Casas, Fua, Sotnychenko, Xu, and Theobalt} 2017

Citation
Citation
{Nehvi, Golyanik, Mueller, Seidel, Elgharib, and Theobalt} 2021

Citation
Citation
{Rudnev, Golyanik, Wang, Seidel, Mueller, Elgharib, and Theobalt} 2021

Citation
Citation
{Romero, Tzionas, and Black} 2017

Citation
Citation
{Nehvi, Golyanik, Mueller, Seidel, Elgharib, and Theobalt} 2021



XUE, LI, LEUTENEGGER, STUECKLER: EVENT-BASED NON-RIGID RECONSTRUCTION 7

0 10 20 30 40 50
Error Thresholds (mm)

0.2

0.4

0.6

0.8

1.0
3D

 P
CK

Ours Median      (AUC=91.20%)
Ours Average     (AUC=90.67%)
Nehvi's Median  (AUC=78.68%)
Nehvi's Average (AUC=77.59%)

(a) MANO hand sequences.
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(b) SMPL-X hand sequences.
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Figure 2: 3D-PCK curve @50mm on synthetic sequences.

(a) Ground-truth (b) Events

(c) Ours (d) Nehvi’s [15]

Figure 3: Qualitative reconstruction results on synthetic MANO hand sequences.

model. Similar to our approach, Nehvi’s method is optimization-based and requires the ini-
tial parameters of the mesh template. To ensure a fair comparison, we use Optuna [1] to tune
hyperparameters in Nehvi’s method and our method. We observe that our approach is about
2.5-times more accurate than Nehvi’s method. We also show the 3D-PCK curve of both ap-
proaches in Fig. 2a. Apparently, our method has higher AUC than Nehvi’s method. Results
in Table 1 and Fig. 2a demonstrate that our method outperforms Nehvi’s method clearly.

In the SMPL-X hand sequences, the hand is attached to a human body model. Here,
our approach reconstructs the 6-dimensional pose parameters, which is consistent with the
evaluation conducted in Rudnev’s method [23]. We report quantitative results in Table 1.
It can be seen that our approach achieves better performance than Rudnev’s method [23]

(a) Ground-truth (b) Events

(c) Ours (d) Rudnev’s [23]

Figure 4: Qualitative reconstruction results on SMPL-X hand sequences.
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(a) Ground-truth (b) Events

(c) Ours

Figure 5: Qualitative reconstruction results on SMPL-X arm and hand sequences.

in MPJPE. Rudnev’s method is learning-based and does not require the knowledge of the
initial pose parameters. We use the network trained by [23] which is limited to the resolution
(240×180) of the DAVIS 240C camera. Thus, we simulate event streams of the same motion
with the intrinsics provided in [23] for Rudnev’s method. We observe that since the global
rotation and translation are fixed, events are only generated where the deformation occurs.
Rudnev’s method seems to perform less well in this case than our approach.

Finally, we evaluate the performance of our approach on sequences which combine arm
and hand motion using the SMPL-X model. In the synthetic data generation process, we
vary 6 principal parameters to synthesize hand poses and the 3 rotation parameters of the
elbow joint. Our approach jointly optimize these hand and elbow parameters. The median
MPJPE in Tab. 1 demonstrates that our approach can reconstruct the motion of the arm and
hand with high accuracy. The mean MPJPE is higher than the median MPJPE due to failures
in some sequences. We show failure cases and their analysis in the supplementary mate-
rial. The difference in accuracy to the SMPL-X hand sequences can be explained by the
fact that for the SMPL-X arm & hand sequences, also the elbow joint needs to be recon-
structed. Moreover, the hand is visible on different scales in the image (the hand is smaller
for SMPL-X arm & hand). Hence, the absolute error in mm becomes higher. As an incre-
mental optimization-based approach, our approach can also drift, but it can snap the mesh
silhouette to the observed events on the contour if sufficient observations are available. In
the supplementary material, we provide a plot of median error over time for the MANO hand
dataset.

Differently to [11, 23], our implementation is not real-time capable, due to the com-
plete evaluation of all event measurement likelihoods for all mesh faces in the soft E-step.
Depending on the motion, a sequence can be split into 50 to 500 event buffers. For each
event buffer, the current average run-time of the method is 8.76 seconds on MANO hand
sequences, and 50.72 seconds on SMPL-X arm and hand sequences. Our current implemen-
tation in PyTorch. In future work, the optimization process could be implemented more effi-
ciently by associating mesh faces with a local search, tailor code with CUDA/C++, and using
second-order Gauss-Newton methods instead of the current gradient-descent algorithm. In
the supplementary material, we also provide evidence that hard data association with the
most likely mesh face in the E-step only slightly affects accuracy. Due to the non-convexity
of the problem, our approach needs a sufficiently good initial guess of the pose. In the sup-
plementary material, we evaluate reconstruction accuracy vs. varying noise levels for the
initial pose. We also evaluate the effect of varying noise in the events on accuracy in the
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Image
(24 fps)

Lin et
al. [11]

Events

Nehvi et
al. [15]

Rudnev
et al.
[23]

Ours

Figure 6: Qualitative results on a real event sequence from a DAVIS240C camera. Lin
et al. [11] infer MANO pose parameters from intensity images; Rudnev et al. [23] infer 6
principal MANO pose parameters; Nehvi et al. [15] and our approach optimize 45 MANO
pose parameters. Our approach recovers the deformation most similar to the ground truth.

supplementary material.

4.3 Qualitative Evaluation
Synthetic Data We show qualitative results of our approach and state-of-the-art baseline
approaches [15, 23] on synthetic sequences. For each object, the ground-truth RGB images,
accumulated events during the motion, and reconstruction results are shown. We crop all
images with a fixed ratio to increase the view of the objects. Results on synthetic MANO
hand sequences of our approach and Nehvi’s approach [15] are shown in Figs. 3c and 3d,
respectively. It can be observed that our approach reconstructs the deformation of the hand
well, while Nehvi’s approach struggles to track the hand pose accurately. Note that Nehvis
method does assume black background and generatively models the specific log intensity
changes induced at the optical flow at contours. Our approach only assumes that events are
generated by contours without explicit dependency on the optical flow, hence, it is more
robust to textured backgrounds. We compare our approach with Rudnev’s method [23] in
Fig. 4d on a SMPL-X hand deformation sequence. While our approach can reconstruct
the hand motion well, Rudnev’s approach performs less accurately. For the sequences with
combined arm and hand motion of the SMPL-X model, we show qualitative results of our
approach in Fig. 5c. Our proposed approach can reconstruct the motion well.

Real Data In Fig. 6, we also show qualitative results of our approach with the MANO
hand model on real sequences with hand motion captured with a DAVIS240C camera. The
camera also records grayscale intensity frames for reference. Since our approach requires
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an initialization of the hand pose parameters, we use [11] on the first image frame and set
rotation and translation manually, since the pretrained model did not yield proper poses on
the DAVIS gray scale images. Further details on the initialization procedure are provided
in the supplementary material. We compare our approach qualitatively with state-of-the-art
image-based (MeshGraphormer [11]) and event-based [15, 23] methods. MeshGraphormer
is a learning-based approach which predicts MANO pose parameters from grayscale images.
It has solid reconstruction performance for slower motions, but suffers from motion blur for
fast motions. Furthermore, the temporal resolution of the reconstruction result is limited by
the frequency of the frames. Compared to the result of MeshGraphormer [11] and event-
based approaches [15, 23], our approach follows the ground-truth reference more closely.

4.4 Assumptions and Limitations
Our approach uses a loose coupling of frames and events by initializing the optimization
from the gray-scale frame. A possible direction of future work is to extend the method by
feeding the frame-based information at a specific lower rate and use the events to estimate
pose between frames in a tightly-coupled joint optimization framework. In our experiments,
self-occlusions occur within the hand (for instance between fingers, or fingers and the palm,
see also Fig. 3). The more self occlusions, the more unconstrained the pose parameters get
due to the partial observations and low number of events. The constant velocity model and
the PCA subspace of MANO can help to regularize the motion in this partially constrained
setting. Our method relies on events on the contour and cannot estimate deformation if there
are little contour events due to similar background color or insufficient motion. Due to the
image projection, the contour information seems not sufficient yet for reconstructing shape
parameters concurrently with rotation and translation of the objects with our formulation.
To address challenging settings like 6D pose estimation or crossing hands in future work,
one could for instance investigate including learned temporal priors, texture-based cues, or
combining events with frames in a joint optimization framework.

5 Conclusion
We present a novel non-rigid reconstruction approach for event cameras. Our approach for-
mulates the reconstruction problem as an expectation-maximization problem. Events are
associated to observed contours on parametrized mesh models and an alignment objective
is maximized to fit the mesh parameters with event measurements. Our method outper-
forms qualitatively and quantitatively state-of-the-art event-based non-rigid reconstruction
approaches [15, 23]. We also demonstrate that our proposed approach is robust to noisy
events and initial parameter estimates. In future work, texture-based reconstruction from
events and frames could be combined with our approach or the run-time of our implementa-
tion could be improved by searching for correspondences efficiently.
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