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1 Event Simulation for Non-rigid Object

We propose an event data simulator which generates synthetic events and other data modali-
ties (Fig. 1) of human body motion, especially of hand deformation. In addition to the events
stream simulation, our simulator is able to simulate RGB image, depth image, 2D motion
field, and normal map. Our event stream simulator is inspired by Nehvi’s simulator [6],
ESIM [8], and Rudnev’s simulator [10]. It combines advantages of above mentioned simu-
lators. We compare our simulator with these existing event stream simulators at the end of
the section.

(a) (b) (c) (d) (e)

Figure 1: All data modalities in our simulator, including (a) RGB image, (b) depth map, (c)
motion field, (d) normal map, (e) accumulated events in 1/30 seconds.

1.1 Event Generation Model

Unlike RGB cameras which capture absolute brightness for each pixels at a fixed frame rate,
event cameras record logarithmic pixel-level brightness change asynchronously. To simulate
the event at time ti, we calculate the absolute logarithmic brightness at each pixel ui, denoted

© 2022. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

Citation
Citation
{Nehvi, Golyanik, Mueller, Seidel, Elgharib, and Theobalt} 2021

Citation
Citation
{Rebecq, Gehrig, and Scaramuzza} 2018

Citation
Citation
{Rudnev, Golyanik, Wang, Seidel, Mueller, Elgharib, and Theobalt} 2021



2 XUE, LI, LEUTENEGGER, STUECKLER: SUPP. MAT. EVENT-BASED RECONSTRUCTION

as L(ui, ti), and compare with the logarithmic brightness value of the last sampled image at
time ti−1. The polarity p of the event is

p(ui, ti) =

{
+1 if L(ui, ti)−L(ui, ti−1)≥C+ ,

-1 if L(ui, ti−1)−L(ui, ti)≥C− ,
(1)

where C+ and C− are positive and negative contrast threshold, respectively. If the log-
arithmic brightness change is less than the corresponding contrast threshold, no event is
generated at pixel ui.

To simulate the motion field, we project the 3D movement of each mesh face onto the
2D image plane. Then, we adjust the time interval of next sample according to the largest
motion vector magnitude among all pixels. For more details about the adaptive sampling
principle, please refer to ESIM [8].

We also generate noisy events to make the simulated data more realistic. As in ESIM
[8], we sample the contrast threshold from a normal distribution with standard deviation σ

for each pixel at every sampling step to add uncertainty to the event generation. To simulate
salt-and-pepper noise on the background, we sample the probability of each pixel from a
uniform distribution in [0,1], and compare with a predefined threshold. If the probability
exceeds the threshold, a noise event is generated. We then sample the timestamp of the noise
events uniformly in [ti−1, ti]. For the adjustment of threshold to have the similar amount of
salt-and-pepper noise as real event cameras, please refer to Rudnev’s simulator [10].

1.2 Non-Rigid Parametric Models

When simulating hands alone using MANO [9], we use the full 45-dimensional PCA pa-
rameters of MANO. SMPL-X [7] is an expressive parametric human model, which models
shape and pose of the human body using SMPL [5], hand pose using MANO [9], and facial
expression using FLAME [2, 3]. Note that a PCA low-rank approximation of the pose pa-
rameters of the MANO model is used. The body pose is represented by 3-DoF orientations
of 21 Joints while facial expression is controlled by 10 PCA parameters in expression space.
We show the simulated data stream of these models in the supplementary file.

Our simulator takes a sequence of pose parameters of body and hand, the facial expres-
sion parameters as well as the simulation time as inputs and simulates event stream, RGB
image, depth map, motion field and normal map (see Fig. 1). Similar as ESIM [8], our
simulator assumes that the pose and expression parameters change linearly between two
consecutive inputs of the sequence.

1.3 Comparison

We compare our proposed simulator with existing event stream simulators [6, 8, 10] in
Table 1. Compared to Nehvi’s simulator [6], the simulator we propose can generate the 2D
motion field for deforming objects and is accelerated using CUDA. Our experiments show
that our simulator is 78-times faster by simulating the same hand motion of MANO model
[9]. Compared to ESIM [8], our simulator can simulate events of human body motion.
Compared to Rudnev’s simulator [10], our simulator uses the adaptive sampling strategy to
avoid redundancy for small motion, while Rudnev’s method samples image frames every
0.001 seconds regardless of the motion.
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Objects MF & AS CUDA
Rebecq et al. [8] Rigid Objects 3 7

Nehvi et al. [6] MANO [9] 7 7

Rudnev et al. [10] SMPL-H [9] 7 3

Ours SMPL-X [7] 3 3

Table 1: Comparison between our event simulator and other event simulators. MF stands for
motion field while AS stands for adaptive sampling.

MANO hand The simulated data stream of single MANO [9] model is shown in Fig. 2.
Note that the MANO hand model only contains the hand but no arm.

(a) (b) (c) (d) (e)

Figure 2: All data modalities of MANO [9] hand model, including (a) RGB image, (b) depth
map, (c) motion field, (d) normal map, (e) accumulated events in 1/30 seconds.

SMPL-X hand We visualize the simulated data stream of SMPL-X [7] hand model in
Fig. 3. It only contains the motion of the hand. However, attaching the arm to the hand
makes it more realistic.

(a) (b) (c) (d) (e)

Figure 3: All data modalities of SMPL-X [7] hand, including (a) RGB image, (b) depth map,
(c) motion field, (d) normal map, (e) accumulated events in 1/30 seconds.

SMPL-X arm and hand The simulated data modalities of SMPL-X [7] arm and hand
motion are visualized in Fig. 4. The data contains the combined motion of the arm and the
hand.
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(a) (b) (c) (d) (e)

Figure 4: All data modalities in SMPL-X [7] arm & hand, including (a) RGB image, (b)
depth map, (c) motion field, (d) normal map, (e) accumulated events in 1/30 seconds.

2 Incremental EM reconstruction using Contour Events

2.1 Algorithm
In this section, we show the pseudo code of our approach in algorithm 1. It consists of an E-
step to estimate the event association likelihood, and an M-step to maximize the association
likelihood.

Algorithm 1 Incremental EM reconstruction using event-based cameras
Input: events {ek, · · · ,ek+N−1} in spatio-temporal buffer Wk
Output: optimized mesh pose parameter θk

1: procedure EXPECTATIONMAXIMIZATION
2: θk← initialization of mesh pose,
3: E-step:
4: f (θk)← generate mesh model given pose parameter θk,
5: ob j_ f unc← 0, initialization of objective function
6: for ei in {ek, · · · ,ek+N−1} do
7: di

normal ∈ [F ]← dot product between event ei to F faces,
8: di

lateral ∈ [F ]← lateral distance from event ei to F faces,
9: di

longitudinal ∈ [F ]← longitudinal distance from event ei to F faces,
10: P(ei|a, f (θ)) ∈ [F ]← Likelihood of event ei caused by F faces,
11: E(LL( f (θk|ei,a)))← expectaion of log-likelihood of event ei,
12: ob j_ f unc← ob j_ f unc+E(LL( f (θk|ei,a))),
13: M-step:
14: θk← argmax

θk

ob j_ f unc

15: if Optimization not converged then
16: goto E-step.

3 Experiments

3.1 Real Data Mesh Template Initialization
As a template-based method, we assumes the initial pose and shape parameters are known.
For real data, we used MeshGraphormer [4] to infer MANO mesh model from a grayscale
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image. Then, we minimized the chamfer distance between the predicted hand mesh and the
PCA-parametrized MANO hand mesh to optimize shape and pose parameters of the captured
hand. Finally, we fix the shape and pose of the hand, manually fine-tune the global rotation
and translation of the mesh model by the visual alignment between the rendered 2D hand
image and captured hand image.

3.2 Hyperparameter Tuning

We use Optuna [1] to tune hyperparameters in our approach and Nehvi’s method [6]. The hy-
perparameters in our work comprise sharpness control parameters (α , β , γ), early stopping
threshold in the optimization, expectation update threshold, and the outlier distance thresh-
old. The hyperparameters in Nehvi’s method is the contrast threshold C, the smoothness
control weight w, and weights of individual loss terms.

For each scenario, we have 10 random training sequences to tune the hyperparameters.
We use the MPJPE as the metric of the loss function. Optuna will find the smallest MPJPE
error for the hyperparameters. Depending on the scenarios, we have different settings of
hyperparameters for the motion reconstruction based on the MANO model and the SMPL-X
model.

3.3 Drift

As an incremental optimization-based approach, our approach can also drift, but it can snap
the mesh silhouette to the observed events on the contour if sufficient observations are avail-
able. Figure 5 shows that for the MANO hand dataset our approach drifts from the ground-
truth initial value at the beginning phase (buffers (0−100)), but is able to keep the same level
of error in the remaining optimization process. The sequences in our results are between 0.5s
and 2s, while the number of buffers to optimize mainly depends on the speed of the motion.
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Figure 5: Drift during optimization of MANO hand reconstruction experiments. (a) Aver-
age MPJPE development with the number of processed buffer. (b) Number of sequences
still available at the number of processed buffers, indicating over how many sequences the
MPJPE in (a) is averaged.
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3.4 Failure Cases
Our approach fails in some sequences of SMPL-X body and hand motion. We investigated
into why our approach fails in these cases. We visualize the groud-truth images, input event
stream, and reconstructed arm and hand in figure 6. The initial pose is in the blue bounding
box, and the final pose is in the green bounding box. Figure 6b shows that the hand at the
initial pose does not generate valid events. The reason can be inferred from figure 6a: the
fingers at the initial pose has the similar color as the background. According to the event
generation model, no events are generated by the motion of fingers. The lack of events leads
to the failure case of our approach in this sequence. However, as illustrated in figure 6c,
our approach can still reconstruct the arm motion, because the events of arm motion are
generated as usual.

The failure cases due to similar background and object color are more pronounced for the
SMPL-X arm & hand than for SMPL-X hand sequences, because the hand appears smaller
in the image and can overlap with the region in the background with similar color more
strongly than on the SMPL-X hand sequences. For example, see Fig. 6b, where a large part
of the events on the hand are missing. In the SMPL-X hand sequences, the hand appears
larger (for example Fig. 4b) and the events are more widely distributed in the image, such
that often only parts of the hand are affected and the hand pose is better constrained.

(a) Ground-truth motion in se-
quence 1.

(b) Events in sequence 1.
(c) Reconstructed arm and hand
pose in sequence 1.

Figure 6: Analysis of the failure case of our approach for SMPL-X arm and hand sequences

4 Robustness to noise
We evaluate robustness to noisy inputs on the SMPL-X hand motion sequences. In the first
experiment, we investigate the robustness to noisy initial templates of objects. Here, we
sample 6-dimensional initial pose parameters of hand model from a Gaussian distribution
with the mean of ground-truth values and different standard deviations. The 3D-PCK curve
and AUC value of each standard deviation are in Fig. 7. The result demonstrates that our
approach still has AUC of 0.86 when the standard deviation is 0.8. Note that a noise level
of σ = 0.2 is already high for MANO hand parameters which are in the scale −2 to 2 (see
figure 8 for hand parameters θ ∈ R6).

In the second experiment, we evaluate robustness to noise in the input event stream.
Noise is caused by the uncertainty of contrast threshold and salt-and-pepper noise in eval-
uation sequences. Here, we use different levels of standard deviation for contrast threshold
sampling and threshold for salt-and-pepper noise to simulate event streams of the different
noise levels with the same motion. We show the 3D-PCK curves and AUC values of different
noise levels in Fig. 9.
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Figure 7: Robustness to different level of initial template noise

(a) θ −0.2 ·16 (b) θ ∈ R6 (c) θ +0.2 ·16

Figure 8: Variation of MANO hand parameters

The result in Fig. 9a demonstrates that our approach is robust to different levels of un-
certainty on contrast threshold in the event generation process. Besides, Fig. 9b shows that
our approach has solid performance on different amounts of salt-and-pepper noise too.

5 Ablation Study

5.1 Likelihood Formulation
In the first ablation study, we investigate variants of the data likelihood term formulated for
E-step and M-step on SMPL-X hand motion sequences. The data likelihood of E-step is for-
mulated by the lateral probability, the longitudinal probability, and the contour probability:

P(xi | zi = j,θ) ∝ Plateral ·Plongitudinal ·Pcontour. (2)

In the ablation study, we formulate the data likelihood in the E-step by either lateral
probability and longitudinal probability:

P(xi | zi = j,θ) ∝ Plateral ·Plongitudinal , (3)

or the lateral probability and the contour probability:

P(xi | zi = j,θ) ∝ Plateral ·Pcontour. (4)

The proposed data likelihood in the M-step is formulated by the lateral probability and
the longitudinal probability:

P(xi | zi = j,θ) ∝ Plateral ·Pcontour. (5)
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Figure 9: Robustness to different level of (a) contrast threshold uncertainty; (b) salt-and-
pepper noise.

In the ablation study, we formulate the data likelihood only with the lateral probability:

P(xi | zi = j,θ) ∝ Plateral . (6)

We demonstrate the ablation study in the SMPL-X hand motion reconstruction. The
quantitative results of above mentioned variants are shown in Table 2.

MPJPE (mm) AUC (%)
E3M2 (Eq. 2, 5) 1.5289 95.9308
E2normalM2 (Eq. 4, 5) 1.6523 93.5601
E2longitudinalM2 (Eq. 3, 5) 2.2500 92.7352
E3M1lateral (Eq. 2, 6) 1.9891 92.8573

Table 2: Ablation Study on probability terms of the data likelihood in the E-step and the
M-step

The quantitative results in table above demonstrate that the contour probability is essen-
tial for the formulation of the data likelihood term both in the E-step and the M-step. It also
indicates that introducing longitudinal probability in the E-step can slightly improve the per-
formance. our full data likelihood formulation (Eq. 2, 5) has best accuracy on the SMPL-X
hand motion sequences.

5.2 Soft and Hard Association
In the second ablation study, we investigate the soft association and hard association in the
M-step on SMPL-X hand motion sequences. For the soft association, we maximize the for-
mulated logarithmic likelihood for all mesh faces in the M-step. For the hard association, we
select the mesh face which has the highest probability according to the E-step, and maximize
only the likelihood for the mesh face in the M-step.

The result in Table 3 shows that the soft association is slightly better in MPJPE. Gen-
erally, the soft and the hard association does not have huge difference. Our analysis is that
the E-step already assigns a relatively high probability to one mesh face. Thus, the soft
association and the hard association achieve similar results in this experiment.
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MPJPE (mm) AUC (%)
Soft Association 1.11 96.38
Hard Association 1.19 96.45

Table 3: Ablation Study on soft association and hard association
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