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Abstract

Unsupervised video hashing aims to learn a nonlinear hashing function to map videos
into a similarity-preserving hamming space without label supervision. Different from
static images, the motion information within videos is crucial for content understand-
ing. However, most existing works merely extract general features from sparsely sam-
pled frames and do not explore motion information adequately. On the other hand, di-
rectly extracting clip-wise motion features is not practical in inference because of the
heavy computation overhead. In this paper, we propose Motion-Aware Graph Reasoning
Hashing (MAGRH), an end-to-end framework that utilizes the motion information ex-
plicitly while keeping inference efficiency. Specifically, we design a dual-branch archi-
tecture consisting of a main branch and an auxiliary branch. During training, the main
(auxiliary) branch receives frame-wise (clip-wise) inputs and produces general (motion)
hash codes via delicately designed graph reasoning modules and hash layers. On top of
the two branches, we develop a combination of intra- and inter-branch contrastive objec-
tives to simultaneously learn branch-specific hashing functions as well as transfer motion
knowledge from the auxiliary branch to the main branch. In inference, the hash codes
are solely produced by the main branch, which only requires frame-wise inputs. Ben-
efiting from motion guidance, our MAGRH yields superior performance on two public
benchmarks, i.e., FCVID and ActivityNet, even with a small frame rate.

1 Introduction

Video retrieval aims to find videos relevant to a given query from a large-scale database. The
rapid growth of video scale from the Internet and social media raises the concern of retrieval
and storage efficiency, and hashing has become a reliable solution. Hashing aims to project
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high-dimensional real-valued data into compact binary codes in a similarity-preserving way.
Then the binary codes can be stored efficiently and support fast bitwise Hamming distance
computation. In recent years, a bunch of learnable image hashing methods [4, 5, 6, 24, 33]
which leverage label supervision or explore similarity structure among data have achieved
promising performance. On the contrary, video hashing [13, 14, 20, 41] still yields poor per-
formance. The reason is two-fold: (i) Lack of label supervision. Since annotating videos is
more labor-intensive, it is hard to construct large-scale labeled datasets, e.g., ImageNet [25].
(i) Modeling the temporary dependency within frames is challenging. Therefore, efficient
and effective Unsupervised Video Hashing (UVH) has become a valuable research topic.

Most state-of-the-art UVH methods take temporary dependency into consideration. They
mainly adopt RNN [41], LSTM [21, 27], and Transformer [22] to handle sparsely sampled
frames. Some latest works [8, 10] have shed light on Graph Reasoning (GR) in the field of
video content understanding. They mainly focus on learning the semantic relation between
objects within a single frame, while modeling the temporary dependency via GR is seldom
considered. On the other hand, modeling temporary dependency can be regarded as an im-
plicit way to exploit the motion information within frames. However, without explicit motion
guidance, a model may be trapped on objects or scenes, as these semantic components are
easier to learn in sparsely sampled frames. For example, when retrieving “Car Racing”, other
car-dominated videos such as “Parking Car” might be returned, if “Racing” is not empha-
sized. Nevertheless, directly extracting clip-wise motion features via specific models is not
practical in inference due to largely increased computation overhead.

Table 1 lists the configura-  Taple 1: The configuration of three feature extractors.
tion of two frame-wise models in ;10

ideo hashi 21 22 d Input Type Input Size Params GFLOPs
video hashin , and one
i . i l[ . ] VGG-16 Frame 3 %224 x224 138M  15.47
clip-wise model In action reCOZ-  peeNer-50 Frame 3 x 224 x 224 25.6M 4.11
nition [29]. The GFLOPs of the -

R(2+1)D-34 Clip 3x32x112x 112 63.7M 152.76

clip-wise model, i.e., R(2+1)D-34,
is ten times more than that of the other two models. Besides, clip-wise models are not as
flexible as frame-wise models because they usually require a fixed number of input frames.
Hence it is a challenge to exploit motion information as well as keep inference efficiency.

In this paper, we propose a self-supervised video hashing method, namely Motion-Aware
Graph Reasoning Hashing (MAGRH). Specifically, we design a dual-branch architecture
consisting of: (i) A general branch to encode frame-wise general features. (ii) An auxiliary
branch to encode clip-wise motion features. In each branch, we use two cascaded Graph
Reasoning Modules (GRMs) to model the temporary dependency between frames. We fur-
ther develop a combination of intra- and inter-branch contrastive objectives. The intra-branch
objective aims to improve branch-specific hash codes. And the inter-branch objective aims
to transfer motion knowledge from the auxiliary branch to the main branch. As a result,
the main branch learns a “motion-aware” hashing function that can dig motion information
adequately in sparsely sampled frames. In inference, the auxiliary branch is removed, and
the hash codes are solely produced by the main branch with frame-wise inputs. Therefore,
the computation complexity is comparable to conventional video hashing methods.

To summarize, we make the following contributions:

* We propose a novel self-supervised video hashing method, i.e., Motion-Aware Graph
Reasoning Hashing (MAGRH), in which we explicitly model the motion information
and take an early step to adopt graph reasoning to model the temporary dependency.

* We design a dual-branch architecture to produce general and motion hash codes sep-
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arately, as well as a combination of intra- and inter-branch contrastive objectives to
simultaneously improve branch-specific hash codes and force the general hash codes
to preserve more motion information within frame-wise inputs.

» Extensive experiments on two public benchmarks, FCVID and ActivityNet, show the
superiority of the proposed MAGRH. Benefiting from motion guidance, our MAGRH
surpasses state-of-the-art methods by a large margin with fewer inference frames.

2 Related Works

Video Hashing. In the early phase, image hashing has made great breakthroughs in image
retrieval consistently. For example, DH [7] learns hash codes by seeking multiple hierarchi-
cal non-linear transformations. Video hashing can be a direct extension of image hashing
by handling each frame independently and aggregating frame features as the global video
representation [11, 26, 36]. But such a migration yields inferior performance because of the
ignorance of video-specific structural information, e.g., temporal dependency. VHDT [37] is
the first work to explore video temporal information and achieves considerable performance
gain over previous methods. NPH [21] further explores neighborhood information between
videos to preserve the similarity structure. JTAE [19] jointly learns an appearance encoder
and a temporal encoder by reconstructing the visual and temporal pattern separately.

Benefiting from the powerful representation ability of deep neural networks (DNNs),
many DNN-based video hashing approaches emerge in the past few years. Among them,
most state-of-the-art approaches typically sample frames within a video sparsely and lever-
age a sequence model to explore the temporal dependency, e.g., SSTH [41] and SSVH [27].
Inspired by the recent success of Transformer [30], the newly proposed BTH [22] incor-
porates the hash layer into a bidirectional Transformer and surpasses conventional RNN-
and LSTM-based approaches. However, none of the existing video hashing methods utilize
the motion information explicitly. Besides, some of them rely on sophisticated multi-stage
training, e.g. NPH and BTH, which is unfriendly for real-world applications.

On the other hand, some latest works have shown the great potential of Graph Reasoning
(GR) in video content understanding [8, 10]. But they merely adopt GR in a single frame
to learn the object semantic relationship instead of exploiting the whole frame sequence.
Compared to previous works, our MAGRH is a simple end-to-end framework that lever-
ages motion information explicitly and efficiently, and we take an early step to adopt graph
reasoning in video hashing.

Video Representation Learning. Beyond video hashing, there are a bunch of tries to
learn better video representations in the past few years. For instance, TSM [23] captures
temporal information by shifting part of the channels along the temporal dimension, which is
parameter-free. However, the shift operation before each convolution still increases memory
footprint, while our MARGH does not involve extra operations in inference. [32] propose
a temporal consistency regularization (TCR), which maintains representation between the
full-resolution video and its down-sampled version. Our MAGRH differs from TCR because
TCR is a unidirectional regularization while our MARGH enables a bidirectional interaction
between the motion and the general features, i.e., the motion feature can also interact with
general features to enhance themselves, leading to better guidance. It is favorable for videos
that are not motion-centric, as we carefully avoid motion overwhelming other clues. Besides,
the TCR requires label supervision, while our MARGH is fully self-supervised, which is
more practical to be applied in the real world.
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Figure 1: The framework of MAGRH. We first sample two sets of frames and two sets
of clips to construct two correlated views. Each view consists of two branches: (i) A main
branch to encode frame-wise inputs and produce general hash codes. (ii) An auxiliary branch
to encode clip-wise inputs and produce motion hash codes. We develop two contrastive
objectives to learn better representations within each branch and transfer motion knowledge
from the auxiliary branch to the main branch. In inference, the auxiliary branch is removed.

3 Proposed Method

3.1 Problem Formulation and Model Overview

Given a training set D consisting of Np videos that belong to N¢ categories, i.e., D =
{vi,yi}Y,, where v; is the i-th video and y; € {1,--,N,} is the corresponding label of the
i-th video. We aim to learn a neural hashing function # : v; + {—1,1}X such that v; can be
encoded into a K bits binary code b; for efficient retrieval. The learned hashing function H
should preserve the similarity structure of D, i.e., the distance between b; and b; should be
small if v; and v; share the same label, otherwise, it should be large.

To achieve this goal, we propose a self-supervised model named Motion-Aware Graph
Reasoning Hashing (MAGRH), which can be trained in an end-to-end manner. The frame-
work of MAGRH is illustrated in Figure 1. For each video, we first sample two sets of frames
(xg and x‘i) and two sets of clips (xg’ and x") to construct two correlated views {xg,xg’} and
{xf,x"}. Within each view, we design a dual-branch architecture consisting of: (i) A main
branch to encode frame-wise inputs xj (x§) and produce general hash codes b§ (b). (ii)
An auxiliary branch to encode clip-wise inputs xy' (x;") and produce motion hash codes b7
(). On top of the two branches, we develop a combination of two contrastive objectives,
i.e., Lingra-cL and LipercL- Lintra-cL enables branch-specific hash learning while LypercL
transfers motion knowledge from the auxiliary branch to the main branch. In inference, the
auxiliary branch is removed. We only encode frame-wise inputs via the main branch.
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3.2 Training Pipeline

As illustrated in Figure 1, the proposed MAGRH is a contrastive learning-based framework
consisting of two correlated views. Since the two views share the same pipeline, we omit the
subscripts g,k and describe the pipeline within a single view for simplicity.

3.2.1 General and Motion Feature Extraction

As for the main branch, given a video v composed of 7" frames, we first follow [22, 27] to
sample T frames randomly. Then, we send these frames into a general feature extractor, e.g.,
VGG and ResNet, and obtain the frame-wise general features x8 € RT*Dg_where D, denotes
the dimension of general features.

Similarly, for the auxiliary branch, we divide the video v into T" /T, clips, where T is
the number of frames in one clip. In our implementation, we fix T, = 32. Next, we randomly
sample 7T clips, sending them to a motion feature extractor, e.g., R(2+1)D-34, and obtain the
clip-wise motion features x™ € RT*Dm_where D,, denotes the dimension of motion features.

3.2.2 Sequence-level Graph Reasoning

Graph Reasoning (GR) has made great success in video analysis recently [8, 10]. Existing
works mainly focus on mining object relations in a single frame. They treat objects as graph
nodes and learn the representations via graph networks such as GCN [18] and GAT [31]. In
our work, we construct a graph where each node represents a single frame (clip), and conduct
sequence-level graph reasoning via two Graph Reasoning Modules (GRMs).

To be specific, we first project x8,x™ into the same dimension D, via two linear layers
¢4(-) and ¢™(-). Then a learnable positional embedding z,, € R7*P# is added to each pro-
jected feature. Besides, we add a learnable branch-specific embedding z,, € RP# and con-
catenate an extra “[AGG]” token @,g, = maxpool(¢(x)) at the beginning of the sequence.

Formally, the final input sequences are computed as:

= [(p;‘gg; O (x*) +zp+z, € R(T‘H)XDh’ x € {g,m} 1)

where [-;-] denotes the concatenation operator.

Once x8,%™ are prepared, we conduct graph reasoning with two consecutive GRMs, i.e.,
branch-specific GRM and branch-agnostic GRM. As illustrated in Figure 1, the branch-
specific GRM is composed of two independent GCNs corresponding to the main and aux-
iliary branches. While the branch-agnostic GRM only contains a shared GCN between the
two branches. In each GCN, we first construct a graph by computing an adjacent matrix
A € RT+Dx(T+1) followed by row-wise normalization (the superscripts g, m are omitted for
simplicity):

AZ

ZT+1 A2 (2)

A=g(®) g2(%), Aij—

where gi(-),g2(-) denote two projections, A; ; denotes the element of A in the i-th row and
Jj-th column. Next, L graph convolution layers are used to exploit certain (i.e., general and
motion) information within frames (clips). The I-th layer is implemented as [34, 35]:

# =ReLU(LN(A%,_W))),l € {1,--- L} 3)
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where LN(-) denotes layer normalization [1], x; denotes the output of the /-th layer, and
W; € RPDPr denotes the weight matrix of the I-th layer. %y equals to £ in Eqn.(1) and the
output of the L-th layer, i.e., xz, is taken as the final representation.

This cascaded design makes training more efficient because we “decouple” the learning
process of different clues, thus preventing information loss. For the main branch, the sub-
important clues such as object and scene are easier to be preserved in the branch-specific
GRM, while the model pays more attention to motion in the branch-agnostic GRM.

3.2.3 Hash Layers

After obtaining the output of branch-agnostic GRM, i.e., £5 , £/, we apply an average pooling
along the temporal channel:

1 T+1
T+ Y £, €RP x € {g,m} “4)

i=1

=k

where £ ; € RP# denotes the i-th temporal channel of ;. Then we project X%, %" into Dj-
dimensional real-valued vectors 8, A" via a linear layer, where D, equals to the hash code
length. Finally, 48, h™ are binarized through an sgn(-) function.
The overall process of hash layers is as follows:
B =®*(x*) e RP?, x € {g,m}

5
b =sgn(h’) € {~1,1}", x € {g,m} ©

where sgn(x) = 1 if x > 0, otherwise sgn(x) = —1, ®8(-),P™(-) are two linear layers.

3.3 Learning Objectives

Inspired by the recent success of contrastive learning [3, 12, 15], we first propose a hash
code-based contrastive objective, namely Lia-cL, to learn the intra-branch hashing function
for the two branches simultaneously:

(6)

\ exp(s(bg; b)/7)
'CCL == Z log % p* * ok
b bieB exp(s(bq, b]()/r) + sz, eB\{b;,b;} CXp(S(bq, bk* )/T)

1
Lintra-cL = E (ﬁ‘éL + £’8L> (7

where B denotes a mini-batch, by, by denote the hash codes corresponding to two correlated
views, in which the inputs xj,x; are sampled from two non-overlapping frame (clip) sets,
by denotes the negative sample for by in B, 7 denotes the temperature parameter, and s(+,0)
denotes the cosine similarity function.

Beyond Liyya-cL, We hope the learned hashing function of the main branch focuses more
on the crucial motion information within sparsely sampled frames. To achieve this goal, we
take the insights from [28] and derive an inter-branch contrastive objective, namely Lyper-cL,
to transfer motion knowledge from the auxiliary branch to the main branch explicitly. Due
to the space limitation, we only present the formulation of Lyyer.cr here, and leave the full
derivation in the appendix:
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Ax exp(s(bﬁ,b’f)/f)
L& =— E log ; A ; p 3
e P exp (BB /8) + Ky e ) DS B ) /)

1/, A
Linercr = 5 (L& + L1 ) ©)

where 7 denotes the temperature parameter. Note that we only adopt an intra-view con-
trastive between general and motion hash codes.

Finally, we add an L, regularization term L, to reduce the quantization error between
the real-valued vectors 4 and the hash codes b:

Leg= Y Y |6/ -3 (10)

i€{qk} je{g:m}

The overall learning objective is the sum of Linya-cL, Linter-cL, and Lyeg Le.,

»CMAGRH = EIntra—CL + '}/‘Clnter»CL + Ereg (1T)

where 7y denotes the weight parameter for LypercL.
We apply a Straight-Through Estimator [38] to resolve the intractable issue caused by
binarization, thus enabling end-to-end training by back-propagation.

3.4 Inference Setting

In inference, the similarity between a given query and the database items can be calculated
via bitwise Hamming distance efficiently. Notably, the hash codes are solely produced by
the main branch, which is computationally efficient as only frame-wise inputs are required.

4 Experiments

4.1 Experimental Setup

Our proposed MAGRH is evaluated on two widely-used public benchmarks: FCVID [16]
and ActivityNet [2]. FCVID consists of 91,223 videos belonging to 239 categories, these
categories cover a wide range of topics, e.g., scenes, objects, and activities. Following [22,
41], we pick 91,185 videos. The training set has 45,585 videos, and the rest 45,600 videos
form the test set as well as the retrieval database. ActivityNet comprises various human
activities, which are annotated into 200 categories. We follow [22] and select 9,722 videos
as the training set. Since the test set is not publicly available, we randomly pick 1,000 and
3,760 videos in the validation set as the queries and the retrieval database respectively.

We follow previous video hashing works [21, 22, 27, 41] and adopt the Mean Average
Precision at top-K retrieved results (MAP@K) to evaluate the performance. In addition to
MAP@K, we further draw the Precision-Recall (PR) curve as an additional metric. The
retrieved results are sorted by their Hamming ranking.

We use Adam [17] as the optimizer, the initial learning rate is 5 X 107, the batch size
is 64 and the training epoch is 200. Other hyper-parameters are listed as follows: (i) The
dimension of hidden states, D, = 768. (ii) The temperature parameter in Eqn.(6) and (8),
T =1 =0.1. (iii) The weight parameter in Eqn.(11), ¥ = 1. (iv) The input length for training
and inference, T = 10.
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Figure 2: The MAP@XK results of different methods under 16, 32, and 64 bits.
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Figure 3: The PR curve of MARGH and

Figure 4: The MAP@5 results w.rt. dif-

BTH under 64 bits. ferent training protocols.

We use exactly the same frame-wise feature extractors as [22] for a fair inference com-
parison. For clips, we use an R(2+1)D-34 [29] pre-trained on IG-65M [9] to extract 2048-D
features. The feature extractors are frozen during training.

4.2 Results and Analysis
4.2.1 Comparions with state-of-the-arts

We compared the proposed MAGRH with 8 state-of-the-art video hashing methods: BTH [22],
NPH [21], SSVH [27], SSTH [41], JTAE [19], MFH [26], ITQ [11], and DH [7]. The
MAP@XK results are reported in Figure 2. Our MAGRH outperforms all previous methods
under all code lengths by a large margin. Specifically, the MAP@K (K=5, 20, 60, 100) of
MAGRH surpasses the most competitive method, i.e., BTH, by 19.28%, 21.21%, 19.49%,
17.28% on FCVID and 13.87%, 8.18%, 3.48%, 2.14% on ActivityNet under 16 bits.

To show the superiority of our method sufficiently, we further draw the PR curve of MA-
GRH and BTH in Figure 3. It can be seen that MARGH always achieves higher precision
under the same recall rate on all datasets, especially when the recall rate is low. We owe
the performance gain to two aspects: (i) The cascaded GRMs, i.e., the branch-specific and
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Table 2: The MAP@K w.r.t. object and Table 3: The inference efficiency comparison be-
scene subsets on FCVID under 64 bits. tween MAGRH and four state-of-the-art methods.

Method Object Scene Method SSTH SSVH NPH BTH MAGRH
K=5  K=l00 k=5  K=100 Inference Frames 25 25 25 25 10

BTH 0.8608 0.6671 0.6840 0.3582 ——

MAGRH 09516 0.8406 0.8783 0.6841 Encoding Time (ms)  0.88 1.03 142 1.18 046

Table 4: The MAP @K results w.rt. different architectures under 16 bits.

Method FCVID ActivityNet
K=5 K=20 K=60 K=100 K=5 K=20 K=60 K=100
MAGRH 0.4015 0.3329 0.2773 0.2408 0.2551 0.1430 0.0609 0.0383
MAGRH]jinear 0.2494 0.1803 0.1384 0.1188 0.1370 0.0716 0.0330 0.0217

MAGRHyyo specific  0.3856  0.3144  0.2573  0.2221 0.2362 0.1326  0.0571 0.0358
MAGRHy/o agnostic  0.3861  0.3130  0.2539  0.2185 0.2429 0.1343  0.0582 0.0364

branch-agnostic GRM, capture the temporal dependency precisely as well as prevent infor-
mation loss in the interaction between general and motion features. (ii) With explicit motion
knowledge transfer, i.e., Eqn.(8), the model can dig crucial motion information within lim-
ited frames, thus generating high-quality “motion-aware” hash codes while other hashing
methods are less efficient to capture such dynamic semantic components.

We also take the robustness into consideration, and evaluate our MARGH under 64 bits
on two FCVID subsets where motion is not predominant: (i) Object, including 1,089 videos
among cow, dolphin, elephant, laptop, and TabletPC. (ii) Scene, including 1,038 videos
among beach, mountain, desert, river, and sunset. The retrieval results are in Table 2. The
previous SOTA, i.e., BTH, performs well on the object subset but badly on the scene sub-
set, while our MAGRH performs well on both subsets. It implies that as a video-specific
characteristic, motion always helps video hashing. Besides, the GRMs also contribute to
capturing temporal consistency. Therefore, our MAGRH is robust in real scenarios.

It is worth noting that our MAGRH also has higher inference efficiency. We list the
inference frames and the encoding time w.r.t. several state-of-the-art methods in Table 3.
Benefit from the learned “motion-aware” hashing function, our MAGRH can yield superior
performance with fewer frames, thus achieving 2x acceleration compared to other methods.

4.2.2 Component Analysis

To explore the contribution of each component, we design three variants of MAGRH: (i)
MAGRHjjpe,r that removes the two GRMs. We directly send averaged frame (clip) fea-
tures to the hash layers. (ii) MAGRH,, specific that removes the branch-specific GRM. (iii)
MAGRHy/o agnostic that removes the branch-agnostic GRM. The MAP@K results under 16
bits are reported in Table 4. Compared to MAGRH, the performance of MAGRHjjpe,r drops
largely. It implies the proposed sequence-level graph reasoning, i.e., the GRM, models the
temporal dependency effectively and plays a key role in video understanding. Besides, MA-
GRH also outperforms MARGH /o specific and MAGRHyy/o agnostic- It indicates the cascaded
design of GRMs eases training by “decoupling” the learning process of clues from different
branches, thus preventing information loss.

4.2.3 Ablation Study

The effectiveness of motion knowledge transfer scheme: To verify the effectiveness of the
proposed motion knowledge transfer scheme, i.e., LipercL, We compared the performance
with two training protocols: (i) General-Only that only takes 7' frames as the input. In infer-
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Table 5: The MAP@K results w.r¢. different contrastive configuration under 16 bits.

Method FCVID ActivityNet
K=5 K=20 K=60 K=100 K=5 K=20 K=60 K=100
MAGRH 0.4015  0.3329 0.2773 0.2408 0.2551 0.1430 0.0609 0.0383

MAGRHgy n 02375 0.1446  0.0891 0.0689 0.1048 0.0453 0.0194 0.0125
MAGRHiyra n 03783 02964 02295 0.1917 0.2099 0.1085 0.0460 0.0290
MAGRHier ,  0.3738 02863 02154 0.1765 0.1978 0.0977 0.0422 0.0268

ence, the hash codes are purely produced by general features without any motion guidance.
(ii) Motion-Only that only takes T clips as the input. In inference, the hash codes are purely
produced by motion features. For the two protocols, the model is trained without LypercL.
We report the MAP @5 results in Figure 4. It is not surprising that the Motion-Only setting
achieves the best performance because the hash codes preserve most motion information.
But such a clip-wise model is not practical in real scenarios due to the heavy computational
burden. On the other hand, the General-Only setting achieves inferior performance because
of a lack of motion guidance. Compared to the above two settings, our Motion-Aware set-
ting makes a good balance between accuracy and efficiency, i.e., it achieves comparable
performance with Motion-Only and surpasses General-Only by a large margin, while the
computation cost is affordable as the input only requires 7" frames in inference.

The optimal contrastive configuration in Ly,¢a-cr, and Lyper-cr: Note that we di-
rectly align binary hash codes b in Liyg,.cL (Eqn.(7)) and Liper.cL (Eqn.(9)), while align-
ing the real-valued vectors & is also a reasonable choice. Therefore, we further design
three variants to figure out the optimal contrastive configuration for learnable hashing: (i)
MAGRHg gy p that replaces all hash codes b with real-valued vectors & in Lipya-cr. and
Linter-cL- (i) MAGRHjnq n that only replaces the hash codes b with real-valued vectors
hin Lrga-cL. (iii) MAGRHiyer n that only replaces the hash codes b with real-valued vec-
tors /1 in Liyer.cL. We report the MAP@K results under 16 bits in Table 5. MAGRH out-
performs the above three contrastive configurations by a large margin, especially for the
MAGRH;s,;_ . We imply that the optimization in float space is less effective for video hash-
ing because binarization can be regarded as an extra regularization, and some image quanti-
zation works [39, 40] have presented similar conclusions.

5 Conclusions

In this paper, we propose Motion-Aware Graph Reasoning Hashing (MAGRH) for self-
supervised video retrieval. Different from existing frame-wise video hashing methods, we
explicitly extract clip-wise motion features and transfer motion knowledge by designing a
dual-branch architecture with a combination of intra- and inter-branch contrastive objectives.
Besides, we make an early attempt to model temporary dependency via graph reasoning.
Extensive experiments show the superiority of MAGRH over state-of-the-art methods, as the
“motion-aware” hash codes yield a remarkable performance gain even with limited inference
frames, and achieve 2x acceleration compared to previous works. In the future, we may
explore training schemes to make motion knowledge transfer more efficient.
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