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1 Appendix

1.1 The Derivation of LInter-CL

Given the motion hash code M and the general hash code G of video v, we first define a
distribution q with a latent variable C as follows:

q(M,G|C = 1) = p(M,G)
q(M,G|C = 0) = p(M)p(G)

(1)

where p(M), p(G) denote the distribution of M,G respectively, p(M,G) denotes the joint
distribution of M,G. According to Eqn.(1), C = 1 implies the two hash codes M,G are
correlated, while C = 0 implies they are independent.

For a batch consisting of video v and another N videos, we have:

q(C = 1) =
1

N +1
, q(C = 0) =

N
N +1

(2)

Then the posterior probability q(C = 1|M,G) can be derived via Bayes Rule:

q(C = 1|M,G) = q(M,G,C = 1)
q(M,G,C = 1)+q(M,G,C = 0)

=
q(M,G|C = 1)q(C = 1)

q(M,G|C = 1)q(C = 1)+q(M,G|C = 0)q(C = 0)

=
p(M,G)

p(M,G)+N p(M)p(G)

(3)
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Next, we take the log form of Eqn.(3) and have:

logq(C = 1|M,G) = log
p(M,G)

p(M,G)+N p(M)p(G)
=− log

(
1+

N p(M)p(G)
p(M,G)

)
≤− log

N p(M)p(G)
p(M,G)

=− logN + log
p(M,G)

p(M)p(G)

(4)

note Eqn.(4) can be rewritten as:

log
p(M,G)

p(M)p(G)
≥ logN + logq(C = 1|M,G) (5)

then we can derive the Mutual Information Bound by multiplying p(M,G) on both sides of
Eqn.(5) and taking the expectation form:

I(M;G) = Ep(M,G) log
p(M,G)

p(M)p(G)
≥ logN +Ep(M,G) logq(C = 1|M,G)

= logN +Eq(M,G|C=1) logq(C = 1|M,G)
(6)

where I(M;G) denotes the mutual information between M and G. Eqn.(6) can be easily
expanded by adding a negative term Eq(M,G|C=0) logq(C = 0|M,G), i.e.,

I(M;G)≥ logN +Eq(M,G|C=1) logq(C = 1|M,G)+NEq(M,G|C=0) logq(C = 0|M,G)
= logN +Eq(M,G|C=1) logq(C = 1|M,G)+NEq(M,G|C=0) log(1−q(C = 1|M,G))

(7)

On the other hand, transferring knowledge between M and G means maximizing their mu-
tual information I(M;G), which is equivalent to maximizing the lower bound as proposed
in Eqn.(7). Since we do not know the real probability of q(C = 1|M,G), we replace it with a
distance function d(M,G) such that d(M,G) should be small when M,G are derived from
the same video v, otherwise, d(M,G) should be large.

Therefore, the learning objective is:

Ld(M,G) = Eq(M,G|C=1) logd(M,G)+NEq(M,G|C=0) log(1−d(M,G)) (8)

[2] has proven that Eqn.(8) is an equivalent form of InfoNCE [1]. Finally, we can replace
M,G with bg

∗,bm
∗ in our manuscript and derive LInter-CL:

L̂∗
CL =− ∑

bg
∗,bm∗ ∈B

log
exp(s(bg

∗,bm
∗ )/τ̂)

exp(s(bg
∗,bm

∗ )/τ̂)+∑bm
∗−∈B\{bg

∗,bm∗ } exp(s(bg
∗,bm

∗−)/τ̂)
(9)

LInter-CL =
1
2

(
L̂q

CL + L̂k
CL

)
(10)

where τ̂ denotes the temperature parameter.

1.2 Additional Experiments
1.2.1 Ablation Study

The training scheme: In our default training scheme, we optimize intra-branch representa-
tion and transfer motion knowledge synchronously. But the motion feature itself may not be
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Table 1: The MAP@K results w.r.t. different training schemes under 16 bits.

Variant FCVID ActivityNet

K=5 K=20 K=60 K=100 K=5 K=20 K=60 K=100

MAGRH 0.4015 0.3329 0.2773 0.2408 0.2551 0.1430 0.0609 0.0383
MAGRHasyn 0.4027 0.3369 0.2798 0.2426 0.2539 0.1370 0.0584 0.0366

Table 2: The MAP@K w.r.t. 2 weight shar-
ing strategies on ActivityNet under 16 bits.

Variant K=5 K=20 K=60 K=100

MAGRH 0.2551 0.1430 0.0609 0.0383

MAGRHall specific 0.2480 0.1411 0.0604 0.0383
MAGRHall agnostic 0.2454 0.1348 0.0590 0.0370

Table 3: The MAP@K w.r.t. different input
embeddings on ActivityNet under 16 bits.

Variant K=5 K=20 K=60 K=100

MAGRH 0.2551 0.1430 0.0609 0.0383

MAGRHno pos 0.2452 0.1378 0.0576 0.0347
MAGRHno bs 0.2487 0.1403 0.0590 0.0371
MAGRHno AGG 0.2472 0.1392 0.0581 0.0366
MAGRHfeats only 0.2444 0.1361 0.0562 0.0356

good enough in the early stage, thus hurting the learning process of the motion-aware hash-
ing function. Therefore, we design an asynchronous training scheme, namely MAGRHasyn,
by first training the auxiliary branch alone, then fixing it and transferring motion knowledge
to the main branch. Table 1 shows the MAP@K results under 16 bits. The MAGRHasyn does
not bring much performance gain. Therefore, we choose the synchronous training scheme
since it does not require an extra training stage and leaves the training scheme efficiency for
future study.

The weight sharing strategy: We use branch-specific/agnostic graphs because it eases
training difficulty, as we decouple the learning stage. The frame-wise clues are easier to be
preserved in the branch-specific graph, while the branch-agnostic graph focuses on motion
learning. We conduct experiments on ActivityNet under 16 bits with different weight sharing
strategies to verify the effectiveness of our design intuitively. Specifically, we develop two
variants: (i) MAGRHall specific that adopts two branch-specific graphs, i.e., all weights are
private. (ii) MAGRHall agnostic that adopts two branch-agnostic graphs, i.e., all weights are
shared. As shown in Table 2, both of them perform worse than MARGH.

The impact of different input embeddings: Note that besides the origin feature embed-
ding, we add three additional embeddings for the input of MAGRH in our implementation:
(i) The learnable positional embedding that helps to build the topology relation of the graph.
(ii) The branch-specific embedding that helps the modality-agnostic GRM to distinguish the
graph type, i.e. frame and clip graph, which benefits intra-branch representation learning.
(iii) The [AGG] token performs like the “readout” operation in graph reasoning, which ag-
gregates the information over the full graph and prevents information loss. To exploit their
effectiveness, we conduct experiments with four variants: (i) MAGRHno pos that removes
the positional embedding. (ii) MAGRHno bs that removes the branch-specific embedding.
(iii) MAGRHno AGG that removes the [AGG] token. (iv) MAGRHfeats only that removes all
extra embeddings. The MAP@K results are shown in Table 3, both of the four variants
underperform, implying their contribution to the graph reasoning modules.

1.2.2 Parameter Sensitivity

We report the MAP@5 results w.r.t. different loss weight parameter γ in LMAGRH and input
length T in Figure 1 and 2 respectively. It shows γ is more sensitive on ActivityNet than
FCVID because ActivityNet is a motion-centric dataset. Setting γ = 0 removes LInter-CL,
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Figure 1: The sensitivity of the loss weight
parameter γ in LMAGRH.
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Figure 2: The sensitivity of the input length
(frame rate) T .
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Figure 3: The top-5 retrieved results w.r.t. MAGRH (the upper row) and BTH (the bottom
row) under 64 bits on FCVID and ActivityNet.

thus leading to inferior performance. On the other hand, when setting γ to a large value, e.g.,
γ = 2, the performance degrades because of ignorance of sub-important clues, e.g., objects
and scenes. As for input length T , it is reasonable that the model achieves better performance
with larger T . Since the gain is limited when T > 10, we set T = 10 to balance performance
and computation overhead.

1.2.3 Visualization

To show the superiority of the proposed MAGRH intuitively, we illustrate the top-5 retrieved
results by MAGRH and the state-of-the-art hashing method, i.e., BTH, under 64 bits in
Figure 3. The relevance of the top-5 retrieved videos returned by MARGH is consistently
higher than that of BTH, especially when retrieving motion-centric videos. For instance,
BTH falsely returned “Car Parking” when the query video is “Car Racing” possibly because
it only focuses on the object “Car”. Instead, our MAGRH stresses “Racing” and returns
videos with higher relevance.
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