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Abstract

Recent deep image generation models, such as StyleGAN2, face challenges to pro-
duce high-quality 2D face images with multi-view consistency. We address this issue by
proposing an approach for generating detailed 3D faces using a pre-trained StyleGAN2
model. Our method estimates the 3D Morphable Model (3DMM) coefficients directly
from the StyleGAN2’s stylecode. To add more details to the produced 3D face mod-
els, we train a generator to produce two UV maps: a diffuse map to give the model a
more faithful appearance and a generalized displacement map to add geometric details
to the model. To achieve multi-view consistency, we also add a symmetric view image
to recover information regarding the invisible side of a single image. The generated de-
tailed 3D face models allow for consistent changes in viewing angles, expressions, and
lighting conditions. Experimental results indicate that our method outperforms previous
approaches both qualitatively and quantitatively.

1 Introduction

Generative adversarial networks (GANs) have made significant advances in synthesizing
high-quality realistic face images. Furthermore, some GANs offer flexibility in manipulating
face attributes in images, since their latent spaces are highly correlated with various styles,
including pose, gender, and age. However, despite the progress made, it remains challenging
to maintain multi-view consistency of the face while manipulating it.

This paper attempts to convert StyleGAN2 [13] into a 3D face generator in order to
provide direct and consistent control over faces across multiple views. We use the popular
3D Morphable Model as the base model. In the first step, we train a model for estimating
3DMM coefficients directly from a StyleGAN?2 stylecode. This will allow our model to be
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compatible with StyleGAN2 and reduce training efforts later. However, the 3DMM model
cannot provide specific facial details. Therefore, the reconstructed image differs from the
StyleGAN2 image in some respects. In order to improve the quality of the reconstructed
image, we train a model that takes the stylecode as input and generates two UV maps that
augment the details in order to make the reconstructed image resemble the detail in the Style-
GAN?2 image. The two maps are the diffuse map, which represents the face’s appearance,
and the generalized displacement map, which provides geometric details. Moreover, since a
single image can only cover one side of the face and cannot guarantee the face quality on the
opposite side, our method generates an opposite view image of the face using StyleGAN?2 to
add additional constraints. By integrating information from both views, a consistent recon-
struction of the face can be achieved.

The result is a 3D face generator that provides detailed textures and shapes. In addition,
it is compatible with StyleGAN2. In other words, it generates a 3D model with the same
identity as the image created by StyleGAN2 using the same stylecode. Our experiments
demonstrate that our method outperforms other methods and is more controllable. Moreover,
since our method generates 3D face models, it allows for applications requiring a number of
3D faces with different identities, such as passers-by in video games or visual effects.

2 Related work

Disentanglement of 2D GANs. GANSs have demonstrated their ability to generate images
of high quality. Despite their ability to produce high-quality images, many previous studies
have focused on providing semantic control over images by disentangling the latent space of
GAN:Ss. Jahanian et al. [10] found both linear and non-linear optimal paths in the latent space
of GANs by minimizing an objective function. By identifying the principal components of
the latent space, GANSpace [8] identifies important factors of variation. Voynov et al. [26]
learned the meaningful direction by jointly training a set of orthogonal directions and a model
to distinguish the corresponding image transformations. InterFaceGAN [21, 22] obtains the
semantically meaningful directions in latent space using the normal vector of the latent codes
classification hyperplane.

Parameterized face models. Parameterized 3D face models have become an active research
field since Blanz and Vetter proposed the 3D Morphable Model [2] based on the parameter-
ization of the scanned 3D face data. Tran et al. [25] utilized two decoders to map from the
shape and texture parameters to the vertex positions and the texture coordinates to achieve
better representations than the linear models. In order to achieve accurate and fast face re-
construction, Deng et al. [6] leveraged image-level and perception-level losses. Tewari et
al. [24] proposed to control the synthesized face via rig-like controllers. Abdal et al. [1]
proposed StyleFlow, which uses conditional continuous normalizing flow (CNF) to create an
invertible mapping from a latent code and the tunable face attribute variables in the Style-
GAN1/2 latent space.

StyleGAN:s for 3D face synthesis. StyleGANSs [12] have been widely studied for their inter-
pretability and disentanglement. In addition, their explainable latent spaces and high-quality
generation also make them valuable tools for 3D synthesis. Zhang er al. [28] exploited
StyleGAN as a multi-view image generator with pose-related latent codes to train the in-
verse graphic networks, but their work requires manual annotations for rough angles of view.
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Pan et al. [18] first used a neural renderer to generate pseudo samples with various poses and
lightings, then used these samples to guide the images generated by GANs toward the cor-
responding sampled poses and lighting conditions. Shi et al. [23] proposed LiftedGAN, a
framework that maps a latent code of StyleGAN?2 to various maps as representations of shape
and appearance. However, using the depth map as the shape representation causes inevitable
image distortion as the change of view angle grows. StyleUV [15] retrains the architecture of
StyleGAN?2 to produce texture maps. However, unlike us, they did not include a shape rep-
resentation while generating faces. It does not obey the original latent space, either. Luo et
al.’s method [16] synthesizes texture and shape maps by retraining StyleGAN?2 but requires
ground truth 3D geometries and albedo textures. Chan et al. [3, 4] used implicit radiance
field as 3D-aware guidance for synthesizing realistic 3D-aware faces. However, their method
lacks the controllability of the synthesized faces.

3 Method

In this section, we first give a brief introduction to our 3D face model and StyleGAN2. We
then describe the individual modules and the overall training framework. Lastly, we discuss
the loss functions.

3.1 Preliminary: 3D face model

In this paper, we employ the classic Basel Face Model (BFM) [19] and the expression basis
of Guo et al. [7] as our 3D Morphable Model (3DMM). We use 177 values as our 3DMM
coefficients ¢ = (P,y, Poxp, @, 7, 8), where Py € R and P,,, € R%* are the coefficients of
3DMM basis; o € R? is the rotation of the face; 7 € R?’ contains the illumination parame-
ters; and § € R? represents the translation. The shape S3pysus is expressed as follows:

S3DMM(Pid7Pexp) =S + PaBia + PexpBexpa (1)

where S denotes the mean shape; and B;; and B,xp are the 3DMM basis.

3.2 Stylecode to 3DMM and multi-view coefficients

We describe in this section how we construct the modules that predict the 3DMM coefficients
¢ and the multi-view coefficients (d, syaw) given the stylecode w.

3.2.1 Stylecode to 3DMM coefficients

Our goal is to determine the mapping between the stylecode w and the 3DMM coefficients ¢.
First, we randomly select 36,000 stylecodes and feed them to StyleGAN2 to generate cor-
responding face images. For the i-th image generated by w;, we utilize a 3DMM coefficient
fitting tool' for obtaining its 3DMM coefficients ¢;. Using 36,000 pairs of (w;, ¢;), we train
a multi-layer perceptron (MLP) network, ¢ = ®3p(w), to predict the 3DMM coefficients ¢
from the input stylecode w. ®3p(w) comprises two fully-connected multi-layer perceptrons,
both containing three hidden layers with 9-512, 6512, 3-512 hidden units from the first

The code can be obtained from https://github.com/ascust/3DMM-Fitting-Pytorch.
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Figure 1: Results of the stylecode-to-3D-Coefficient mapping. Despite resembling the Style-
GAN?2 images in general, the generated 3D faces lack details such as eyeglasses or wrinkles.

hidden layer to the last one. The first MLP uses Tanh as its inter-connected neurons’ acti-
vation function, while the second MLP uses ELU with ¢ = 1.0 instead. Concatenating the
mapping results of these two parts forms the full 3DMM coefficients.

To acquire pairs of stylecodes and their corresponding 3DMM coefficients for training
the network, we first synthesize face images corresponding to their stylecodes using the
original StyleGAN2. We then employ an open source implementation” to fit the 3DMM
coefficients from the face images. The network is trained by minimizing the L1 distance
between the predicted 3DMM coefficients and the fitted 3DMM coefficients. We use Adam
optimizer with learning rate decay from 1 x 107> to 1 x 1078, The training epochs and batch
sizes are 22 and 16, respectively. Figure 1 provides some results. The mapping module
faithfully predicts the 3DMM coefficients that match the corresponding StyleGAN2 image
generated using a specific stylecode.

3.2.2 Stylecode to multi-view coefficients

Inspired by InterFaceGAN [21, 22], we aim to find a direction d in the StyleGAN?2 latent
space so that moving a stylecode along d generates the image of a face from different viewing
angles. To determine d, we randomly sample 200K stylecodes. Then, we estimate their yaw
angles using ®3p. We pick the stylecodes with the highest 2% yaw angles as one class, and
the stylecodes with the lowest 2% yaw angles as the other class. We solve this problem as a
binary classification task using linear Support Vector Machine (SVM) [5]. And we obtain d
for yaw angles by taking the normal to the decision hyperplane. With the obtained d, we can
rotate a face by w' = w + syaw * d, where syay, denotes the step size we take along the yaw
axis. For generating the face image at the yaw angle o using w, we train a “stylecode-to-
yaw-angle” mapping to determine the corresponding step size: Syaw = Pyaw (W, @). We can
then obtain the stylecode for the same person with the desired angle o using:

W =w+ Py (w, ) xd 2)

3.3 StyleGAN2 as a 3D generator

As shown in Figure 1, we can generate a textured 3D face model corresponding to the
StyleGAN2-generated image using the same stylecode through ®3p. However, the resulting
faces directly generated from the mapped 3D coefficient lack many details and components
compared to those generated by StyleGAN2. As an example, the eyeglasses are absent, as
are the wrinkles and nasal lines (Figure 1). To recover details in an image generated by

Zhttps://github.com/ascust/3DMM-Fitting-Pytorch
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Figure 3: When only one view is used to generate a face model, (c) the result will usually
include artifacts. (e) Our method generates a high-quality model of the entire face by inte-
grating of information from the original and symmetric views.

StyleGAN2, we augment the 3DMM model with a diffuse map and a generalized displace-
ment map; both are UV maps. The former captures the necessary color variations, whereas
the latter captures geometric details of the face image generated by StyleGAN?2.

Figure 2 illustrates the training process. To obtain the diffuse map and the generalized
displacement map, we train a 3D generator. The 3D generator shares the architecture with the
generator of StyleGANZ2, but outputs the two required maps. During training, the stylecode
w is fed to a pre-trained ®3p (Section 3.2.1) as well as a pre-trained StyleGAN2 module in
order to obtain the corresponding 3DMM parameters ¢,, and the target images Jiarge;. With
the base face model, the 3DMM coefficients, and the two UV maps, we render the output
image Ilienger using a differentiable renderer. We train the network with a reconstruction loss
between gt and Ienger in order to encourage the diffuse map and displacement map to
capture the image details generated by StyleGAN2. To improve the fidelity of the generated
maps, we include a pre-trained 2D discriminator from StyleGAN?2 as well as a GAN loss.

As shown in Figure 3(c), using a single image to reconstruct the 3D model usually pro-
duces artifacts, especially on the other side of the face. In order to achieve multi-view con-
sistency and to ensure the quality of the entire face, our method automatically generates a
symmetric face image using StyleGAN2 and uses it as an additional constraint when train-
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ing the 3D generator. As introduced in Section 3.2.2, given a stylecode w, we first obtain its
corresponding step size sy, using the “stylecode-to-yaw-angle” mapping. Following this,
we apply Eq. 2 to obtain a symmetric stylecode w*¥™ that corresponds to the original face
under a symmetric viewing angle (abbreviated as “view angle shifting”). We feed the sym-
metric stylecode w*¥™ into the 3D generator and compute the reconstruction loss between
the rendered image /.7 ¢, and the symmetric StyleGAN2 image Iyg. as well. Because the
face rendered in the original perspective and its symmetric view provides reliable informa-
tion in different regions, our approach utilizes the rendering gradients from the differentiable
renderer to obtain a pixel-wise mask that weighs the effects of each view. Figure 3(d) gives
examples of the masks. For both masks, the texels’ values are set to 1.0 if they are accessed
by the renderer and to 0.0 otherwise. We override the values to 0.5 empirically for the sym-
metric view if the texels are also assessed by the original view. Through the integration of
information from the two pairs of views and masks, our method is able to achieve geometric
and texture consistency across the entire face. A detailed description of the mask generation
can be found in the supplemental material.

3.4 Loss functions

We aim to create high-quality 3D face models with latent codes that are compatible with
StyleGAN2. As a result, we design our loss functions on top of the original StyleGAN?2 loss
function with reconstruction loss. In order to synthesize the view-consistent diffuse map
and displacement map of the face, we also consider multi-view consistency loss to utilize
information from both views while training our generator and discriminator.

3.4.1 Reconstruction loss with weighted masks
Our reconstruction loss consists of photometric and perceptual losses:
Erec (Itargehlrendera Mrender) = ['phom (Itargehlrendera Mrender) (3)
+ 2'percept L percept (Itarget; Irender ) Mrender) ; (4)

where Liagget, Jrender> and Myender denote the target image, the rendered image, and the weighted
mask of rendered face. Apercepr denotes the weight to combine these two losses. The photo-
metric loss encourages the generator to generate a proper diffuse map and displacement map
so that the rendered image resembles the target image:

|[Zrender — harget |3 © Mrend
Eph()to (ItargetaIrender;Mrender) = PEet T2 e
|Mrender|

; &)

where |Mrenger| denotes the number of valid pixels inside the Myenger. We compute the per-
ceptual loss [11, 27] using a pre-trained VGG-16 network.

3.4.2 GAN loss

Our GAN loss follows StyleGAN2’s configuration, which also uses a non-saturating loss
with R1 regularization [17]. The generator loss comes with a non-saturating loss without the
regularization of path length. By employing the non-saturating loss, we are able to provide
the generator with valid gradients at the early stage of training, which allows us to train our
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model more easily in the beginning. With the reconstruction loss (L), our full generator
loss is

EG (Itargel P Irendera Mrender) =-F [log D (Irender )] + )Lrec Erec (Itarget 5 Irender ) Mrender) ) (6)

where D is the discriminator. Our discriminator loss consists of logistic loss term and R1
regularization term:

£D(Itargehlrender) = _E[logD(Itarget)] - E[l - IOgD(Irender)] + %/EX[HVDW(X)”%L (7)

where x is the sampled image from StyleGAN?2 output; 7 is the hyperparameter; and y is the
weight of the discriminator.
3.4.3 Multi-view consistency loss

To enforce multi-view consistency, we include the multi-view generator loss on both the
original and symmetric views with a weight 4,,, to combine the information from both views:

v ori ori Sym sym sym
- EG ( target» ‘render> render) =+ ;LmVLG( target» Irender7Mrender)7 (8)
where (Igne;-Ioraer) denotes the target original and symmetric images; (2 jer-Longe,) denotes

the rendered original and symmetric images; and (MferI‘lclcr7 :ey;ger) denotes the weighted

masks of original and symmetric rendered faces. The multi-view discriminator loss is:

mv __ ori ori Jym - gsym
‘CD = ‘CD( target” render) +z’mv£D( targetvlrender) ©))

4 Experiments

4.1 Implementation detail

We use the StyleGAN2 [13] pre-trained on the FFHQ dataset [12] with Pytorch reimplemen-
tation’ as our backbone. The training images along with their corresponding stylecodes are
all generated by the pre-trained StyleGAN2, the resolution is 256 x 256, and the number of
images is 35,820. We use Adam [14] with learning rate set to 0.001 as the optimizers of both
generator and discriminator, the number of training epochs and batch size are set to 15 and
12 respectively. The training hyperparameters Ayec, Apercept, Amv, ¥ are set to 10.0, 0.2, 0.75,
10.0, respectively. The ratio of training iterations between the generator and discriminator is
set at 5 : 1. The differential rendering pipeline is implemented using Pytorch3D [20].

4.2 Qualitative results

Figure 4 compares our method with other controllable and 3D-aware face synthesis methods
based on StyleGAN?2, including LiftedGAN [23], InterfaceGAN [22], StyleFlow [1], and
EG3D [4]. We exclude StyleRig [24] from the comparison because its implementation is
not available. Among all the compared methods, only our method and InterfaceGAN are
compatible with StyleGAN2 and share the same latent space. As a result, it is not possible
to compare the same person with other methods. We encourage readers to evaluate each

3Source code is available at https://github.com/rosinality/stylegan2-pytorch.
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Figure 4: Visual comparison of our generated faces with InterfaceGAN [21, 22], Lift-
edGAN [23], StyleFlow [1], EG3D [4] in different yaw angles. From left to right, the yaw
degrees are -60°, -30°, -15°, 0°, 15°, 30°, 60°. Please note that LiftedGAN, StyleFlow and
EG3D use different latent spaces from the original StyleGAN2. Therefore, we are unable to
compare the results using the same identity. Nevertheless, it is clear that Lifted GAN, Style-
Flow, and EG3D all generate distorted results at large yaw angles. Our method generates
more consistent results than others when varying the yaw angle.
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)
stylecode#0 0.2 0.4 0.6 0.8 stylecode#1
Figure 5: Smooth transitions between 3D face models can be achieved through interpolating

style codes. (a) StyleGAN2 images. (b) Rendered images. (c) 3D shapes.

generated face individually based on the quality and preservation of identity under large an-
gle changes. Our method, in contrast to other methods that directly synthesize 2D images,
creates a 3D face that is accompanied by two UV maps and 3DMM parameters. To compare
our results with other methods, we render the 3D face at the specified view and paste the ren-
dered face into the StyleGAN2 image. Consequently, some of our results exhibit seams at
the face boundaries. They could be removed using advanced image compositing techniques.
InterFaceGAN[21, 22] uses the Support Vector Machine (SVM) to train a binary classifier
and takes the normal vector of the decision boundary in the latent space as a meaningful
direction. Considering the entire process was conducted in 2D space, InterFaceGAN suffers
from the loss of image content as the yaw angle increases, making its results less consistent.
LiftedGAN [23] utilizes the depth map as the shape representation and trains a couple of
modules to render stably in various perspectives. Compared to InterFaceGAN [22], Lift-
edGAN maintains a more consistent image content with varying yaw angles. However, it
suffers from severe image distortion as the yaw angle increases. StyleFlow achieves disen-
tangled control over different style attributes, including gender, glasses, pose, lighting, and
expression. Nevertheless, its results exhibit significant distortion at large yaw angles due to
a limitation imposed by the latent space of StyleGAN. The recently proposed EG3D [4] can
better preserve shape consistency than InterfaceGAN, Lifted GAN, and StyleFlow; however,
it also exhibits distortions when the yaw angle becomes large, especially around the eyes. As
demonstrated in Figure 4, our method achieves superior results in terms of view consistency
while preserving the quality of the face.

4.3 Quantitative results

To validate the performance of our generative model, we utilize the Frechet Inception Dis-
tance(FID) [9] which quantifies the distance between two distributions of images. We use
it to evaluate the generative power of our model by computing the distance between the
distributions of the real-world data and our results. As our method is unable to synthesize
the background, we paste our rendered image onto the original StyleGAN2 image for FID
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Figure 6: The controllability of expressions and lighting. In each example, we show (a)
the StyleGAN2 image and (b) the rendered image using our method. From (c)-(e), we show
the generated 3D face with manipulated expressions (top row) and lighting (bottom row).

evaluation. The FID scores of our method, LiftedGAN [23], and StyleGAN2 [13] are 11.68,
29.81, and 12.57 respectively. We also use Masked FID, a metric that measures the distance
between the distributions of the foreground-masked real-world image and the rendered re-
sults. On masked FID, our method achieves 11.94, which outperforms StyleGAN2’s 12.93.

4.4 Controllability

In light of the fact that our model has the same architecture as the StyleGAN2, the style-
codes are compatible with interpolating smoothly in the latent space. Consequently, smooth
interpolation in the latent space allows smooth transitions between textured 3D face models.
Figure 5 illustrates the smooth transition between two stylecodes. Moreover, we can also edit
other 3D features such as expression and illumination by adjusting the 3DMM coefficients
and rendering parameters. Figure 6 demonstrates some examples.

5 Conclusions

We propose StyleFaceUV, a framework for generating controllable 3D face models by aug-
menting a pre-trained StyleGAN2 model with 3DMM face models, diffuse maps, and gen-
eralized displacement maps. With the 3DMM model as our base face representation, we
can control the appearance of the generated face. Our framework also predicts an additional
diffuse map and a generalized displacement map to improve the visual quality of generated
faces. To maintain the multi-view consistency of the predicted maps, we introduce a novel
multi-view consistency loss using weighted masks. Our experiments demonstrate that our
method maintains multi-view consistency across face images while avoiding image distor-
tions under large viewing angles.
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