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Abstract

Compressed sensing magnetic resonance imaging (CS-MRI) applies compressed sens-
ing (CS) to effectively accelerate image reconstruction from undersampling k-space data.
Compared with the traditional patch-based sparse representation of CS, the slice-based
convolutional sparse coding (CSC) model makes up for the shortcomings of the sparse
coding by establishing translation invariance. In this paper, based on the slice-based
CSC model, we propose an improved proximal gradient algorithm to optimize image
reconstruction performance. First, the variance regularization term is introduced into
the CSC problem to remove the constraint on the convolutional dictionary. Second, we
introduce the heavy ball system with dry friction from the dynamic system perspective
to find a better local optimal solution. Then, the improved proximal gradient algorithm
is unfolded into an encoder network to obtain the coding. The reconstruction process is
modeled as a decoder network. The convolutional dictionary is updated by the backprop-
agation algorithm via the mean square error of the reconstructed signal. Compared with
the current methods and the latest network, the proposed model-based novel network is
demonstrated that it achieves better reconstruction performances.

1 Introduction
Magnetic resonance imaging (MRI) is a kind of tomography, that uses magnetic resonance to
obtain electromagnetic signals from the human body and reconstruct human information. As
one of the important medical diagnosis technologies, it can achieve high-resolution images,
has high soft tissue contrast and no ionizing radiation to the human body, and provides a
clear physiological and anatomical structure for the clinic. Due to its long time of data
acquisition in k-space and slow imaging speed, some physiological motion artifacts [18]
may be introduced in the imaging process, resulting in the decline of imaging quality and
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affecting the results of medical diagnosis. Therefore, reducing sampling time and ensuring
accurate data reconstruction is of far reaching importance for clinical diagnosis.

In 2006, the theory of compressed sensing (CS) proposed by Candes [7] and Donoho [11]
proved that as long as the finite equidistant condition (RIP) is satisfied, the original signal can
be recovered under the condition that the sampling frequency is far lower than Nyquist. Due
to the inherent compressibility of MRI data and the ability of MRI scanners to acquire fre-
quency domain encoded samples, CSMRI can be used for effective sparse coding in wavelet,
curving wave and other transform domains and then becomes the ideal solution for MRI
reconstruction [19].

Sparse representation is one of the most popular prior mathematical modeling meth-
ods in various signal and image processing applications, widely used in image processing
field [3], [10], [26]. In general, transformation that allows an image to have a sparse repre-
sentation is called sparse transformation. Total variation (TV) [20] and wavelet transform [4]
are two kinds of transforms commonly used in CS recovery problems. It is well known to use
greedy algorithms (such as Orthogonal Matching Pursuit (OMP) [9]) or convex optimization
algorithms to solve general sparse representation problems. In recent years, replacing image
with patch and obtaining the local sparsity of sparse representation by learning transforma-
tion and learning dictionary (such as K-SVD [3] and MOD [12]) have gradually entered
people’s vision. This method of modeling signal data using the linear combination of several
atoms in the learning dictionary, rather than predefined methods based on a global trans-
form dictionary, has greatly improved the reconstruction quality of magnetic resonance im-
ages [14], [17]. Assuming that each image block has sparse representation, Ravishankar and
Bresler [23] proposed a well-known two-step alternate method called Dictionary Learning-
based MRI Reconstruction (DLMRI). This data-driven learning method greatly improved
over previous methods based on predefined dictionaries.

However, this sparse representation method based on patch also has some defects [21].
When the sparse representation model is used to process images, it usually assumes that the
trained image patches are independent of each other to obtain approximate global estimates.
It ignores the correlation between image patches, resulting in a high degree of redundancy
in the final result. Secondly, because its mathematical formula is essentially a linear combi-
nation of the learned surfaces, it cannot fully represent the image features of high frequency
and high contrast, so some important details and texture parts of MR images are lost [15].

Zeiler et al. [29] proposed CSC, which uses convolution dictionary and convolution sum
of convolution sparse coding coefficients to replace the linear combination of traditional
methods. It generates different translation invariants and avoids overlapping face pieces to
make up for the fundamental shortcomings of traditional sparse coding. CSC has been suc-
cessfully applied to image reconstruction, image denoising and restoration [8], [16] in recent
years. Papyan proposed a new convex relaxation algorithm through slice-based dictionary
learning (SBDL) [21]. This algorithm adopts a local view, in which the sum of slices forms a
signal block, which can train the convolution dictionary according to the local calculation in
the signal domain to solve the global CSC problem. However, since the algorithm is based
on the ADMM [6] solver in the signal domain, the convergence of the tracking algorithm,
when the convolution dictionary is updated iteratively, is difficult to be proved. Peng [22]
realized the joint and direct optimization of CDL problem under the non-convex and non-
smooth optimization scheme and proposed a forward-backward splitting algorithm based on
the Fourier domain. To solve the problem that the gradient descent algorithm can only ensure
that the convergence result reaches the local lowest point rather than the global lowest point,
Attouch [2] proposed IPGDF, a novel forward-backward splitting algorithm (convex). From
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the point of view of dynamic system, the algorithm discretizes the heavy ball system with
friction (HBDF) by explicit implicit Euler, proving the algorithm’s finite convergence.

In recent years, DNN has been introduced to CS to facilitate sampling and reconstruction
due to its powerful learning ability. Some DNN-based algorithms have the advantages of
adaptive solid learning ability and high reconstruction quality [25], [28]. Inspired by the
Iterative Shrinkage Threshold algorithm and not strictly following the iterative optimization
of ISTA, ISTA-Net [30] developed a general structured deep network to improve the ℓ1-
relaxation CS reconstruction. ADMM-Net [27] first proposed the deep architecture of CS-
based MRI model derived from ADMM. Recently, a supervised convolutional sparse coding
network (CSCNet) [24] based on ISTA algorithm and LISTA network has been used to solve
the image denoising problem. It is trained by random gradient descent, but due to the use of
ISTA iterative algorithm, it is easy to fall into local minima, resulting in poor results in the
application of CSCNet in noise measurement.

This paper proposes a new CSC deep structure using an improved proximal gradient
algorithm to realize CSMRI reconstruction. Firstly, due to the characteristics of sparse rep-
resentation, we choose CSC to avoid some defects of sparse coding. To make the networking
of the algorithm feasible, we introduce the variance regularization term into the optimiza-
tion problem to eliminate the influence of local convolution dictionary on the network [13].
Secondly, because the general proximal gradient algorithm is difficult to find the global op-
timal solution quickly and accurately, we apply the inertial forward and reverse splitting
algorithm ISTA-IDF from the dynamic system perspective to obtain better MRI reconstruc-
tion performance. By introducing DNN, we expand CSC into a deep network, improving
the reconstruction efficiency. The reconstruction process is modeled as a decoder network,
and the iterative process is carried out strictly according to the algorithm. Experiments show
that our proposed MRI reconstruction framework has better reconstruction quality than the
current deep network.

The rest of this paper is organized as follows. The second part introduces the improved
CSC model using ISTA-IDF algorithm and the network architecture after CSC expansion.
The third part gives the experimental results and demonstrates the performance comparison
between the proposed method and other methods under different influencing factors. The
fourth part summarizes the methods proposed in this paper and prospects the future work.

2 The Proposed Method

In this section, we describe in detail the process of reconstructing MR images through con-
volutional sparse coding. We first propose an ℓ1 norm penalty optimization problem based
on CSC to reconstruct MRI. The variables are updated by ISTA-IDF algorithm iteratively
and finally expand the process into a deep network according to its iteration.

2.1 Convolutional Sparse Coding via Improved Proximal Gradient

Given a signal XXX ∈RN and a matrix DDD ∈RN×M termed a convolutional dictionary, the sparse
representation of XXX amounts to the solution for the following problem:

argmin
ΓΓΓ

1
2
∥XXX −DDDΓΓΓ∥2

2 +λΩ(ΓΓΓ) , (1)
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where the global signal XXX is a linear combination of a few columns, ΓΓΓ ∈ RM is a sparse
vector, Ω is the sparsity inducing function imposed on the sparse vector such as the ℓ1 norm
or the ℓ0 norm, λ is the parameter that controls the sparsity level.

According to the slice-based approach for training the CSC model proposed by Papyan,
the algorithm expresses the global signal as XXX = ∑N

i=1 PT
i DLααα i. Where DLααα i represents

the i-th slice and PT
i ∈ RN puts it in the i-th position and fills the rest with zeros. The

sparse vector ΓΓΓ is decomposed into a set of non-overlapping m-dimensional sparse vectors
{ααα i}N

i=1 ∈Rm [21]. Considering the decomposition of XXX in terms of its slices and setting a ℓ1
sparsity penalty as the regularization term, the above problem can be written as the following
constrained minimization problem:

argmin
DDDL,{ααα i}N

i=1

1
2
∥XXX −

N

∑
i=1

PT
i DLααα i∥2

2 +λ
N

∑
i=1

∥ααα i∥1 . (2)

This kind of minimization problem can be written in form argmin
x

f (x) + g(x), where

f is a non-convex smooth function with Lipschitz continuous gradient, and g is a proper
lower semicontinuous convex non-smooth function. To solve this type of problem, a dry
friction damping ∂ϕ (x′ (t)) is introduced into the gravity ball system and the, HBDF system
is shown below, where γ > 0 is a constant viscous damping parameter [2]:

x′′ (t)+ γx′ (t)+∂ϕ
(
x′ (t)

)
+▽ f (x(t))+∂g(x(t)) ∋ 0 . (3)

In this system, we use the characteristics of dry friction damping ∂ϕ (x′ (t)): the friction
potential function ϕ is a lower semicontinuous convex function and has a sharp minimum at
the origin. If the friction potential function ϕ satisfies the dry friction property (DF) with
B(0,r) ⊂ ∂ϕ (0), we define that ϕ satisfies the property (DF)r. According to the property
of ϕ , we set ϕ(x) = r3∥x∥1, where r3 > 0 represents the dry friction threshold. Due to ∥x∥1
having a sharp minimum value at the origin, from the perspective of dynamics when the
resultant force of the system is less than the dry friction threshold, the speed becomes zero,
and the system reaches a stable state.

Given h > 0 as the time step, we discretize the formula forward backward Euler and then
obtain:

1
h2

(
xk+1 −2xk +xk−1

)
+ γ

h

(
xk+1 −xk

)
+∂ϕ

( 1
h

(
xk+1 −xk

))
+▽ f

(
xk
)
+∂g

(
xk+1

)
∋ 0

. (4)

ISTA-IDF introduces an auxiliary variable ϕk(x)= hϕ
( 1

h (x−xk)
)

to make ∂ϕk
(
xk+1

)
=

∂ϕ
( 1

h

(
xk+1 −xk

))
hold, then we can get ∂ϕk + ∂g = ∂ (ϕk +g). Equation (4) could be

simplified to:

xk+1 +
h2

1+ γh
∂ (ϕk +g)

(
xk+1

)
∋ xk +

1
1+ γh

(xk −xk−1)− h2

1+ γh
▽ f

(
xk
)
. (5)

Finally we derive the iterative formula of ISTA-IDF algorithm from equation (5):

xk+1 = proxλ (ϕk+g)

(
xk+1/2

)
, (6)

xk+1/2 = xk +β
(

xk −xk−1
)
−λ∇f

(
xk
)
, (7)

where β = 1
1+γh and λ = h2

1+γh .
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2.2 MR Image Reconstruction with CSC
In order to solve the MRI reconstruction problem, we introduce ISTA-IDF proximal gradient
descent algorithm into the general CSC model from the perspective of dynamics and add a
variance regularization term to the formula to prevent a collapse in the ℓ1 norm of the sparse
vector [5], [13]. The improved optimization problem we finally get is as follows:

argmin
{ααα l,i}

1
2

I

∑
l=1

∥∥∥∥∥Fu

N

∑
i=1

PT
i DLααα l,i − yyyl

∥∥∥∥∥
2

2

+ r1

I

∑
l=1

N

∑
i=1

∥∥ααα l,i
∥∥

1 + r2

N

∑
i=1

[(
T −

√
Var(ααα ·i)

)
+

]2
,

(8)
where DL is the local convolutional dictionary that has n rows and m columns; αl,i is the
sparse coding of each component i of each sample l; PT

i , which has N rows and n columns,
is the operator that puts DLαl,i in the i-th position and pads the rest of the entries with
zero; r1 and r2 are both hyper-parameters. Considering the constraint function imposed on
the sparse coefficient, we adopt the ℓ1 norm constraint function. Fu ∈ RM×N represents
the partially sampled Fourier encoding matrix; yyyl ∈ RM represents the partially sampled
Fourier measurement and belongs to the group of image data YYY = [yyy1,yyy2, ...,yyyI ]. We apply
xxxl = ∑N

i=1 PT
i DLαl,i represents a set of reconstructed image data.

For this ℓ1 non-smooth convex optimization model, we define f and g as follows:

f
(
ααα l,i

)
=

1
2

I

∑
l=1

∥∥∥∥∥Fu

N

∑
i=1

PT
i DLααα l,i − yyyl

∥∥∥∥∥
2

2

+ r2

N

∑
i=1

[(
T −

√
Var(ααα ·i)

)
+

]2
, (9)

g
(
ααα l,i

)
= r1

I

∑
l=1

N

∑
i=1

∥∥ααα l,i
∥∥

1 . (10)

The first item of f
(
ααα l,i

)
is the data consistency item. The second item in equation (9)

is over squared hinge terms involving the variance of each latent component α·i ∈ Rn across
the batch where Var(ααα ·i) =

1
I−1 ∑I

l=1
(
ααα l,i −µµµ i

)2 and µµµ i is the mean across the i-th latent
component, namely µµµ i =

1
I ∑I

l=1 ααα l,i.
Then we apply ISTA-IDF algorithm to solve the optimization problem above. Introduce

the intermediate variable
{

αk+1/2
l,i

}
, which is defined as

αααk+1/2
l,i = αααk

l,i +β
(

αααk
l,i −αααk−1

l,i

)
−λ ▽ f

(
αααk

l,i

)
. (11)

Consequently, the update rule of sequence
{

αααk+1
l,i

}
we acquire is

αααk+1
l,i = proxλ (ϕk+g)

(
αααk+1/2

l,i

)
. (12)

In order to get the sequence
{

αααk+1
l,i

}
, we need to calculate the gradient of the function f

using the following formula:

▽αααa,b f =


DT

LPaFT
u

(
Fu

N
∑

i=1
PT

bDLαααa,i − yyya

)
− 2β

I−1
T−
√

Var(ααα ·b)√
Var(ααα ·b)

(αααa,b−µµµb)
√

Var(ααα ·b)<T

DT
LPaFT

u

(
Fu

N
∑

i=1
PT

bDLαααa,i − yyya

)
otherwise

.

(13)
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Due to the function ϕk + g in the composite proximal mapping proxλ (ϕk+g)

(
αk+1/2

l,i

)
is

the sum of two convex non-smooth functions (ℓ1), the closed form solution of this proximal
mapping can be obtained. For the variable x ∈ R and a ∈ R (current iteration value xk of x),
the proximal mapping can be modified to the following form:

proxλ (ϕk+g)(x) = argmin
u

1
2
∥x−u∥2

2 +λ r1∥u∥1 +λ r3∥u−a∥1 . (14)

Decompose the above formula into a one-dimensional minimization problem of each
component, for each a ∈ R, set

Ta(x) = argmin
u

1
2
(x−u)2 +λ r1|u|1 +λ r3|u−a|1 . (15)

According to the definition of Ta(x), it is easy to know that Ta(x) = −T−a(−x). The
solution of Ta(x) can be obtained only by calculating the solution at a ≥ 0.

Using the differentiability of ℓ1-regularization, the optimality condition can be got: λ r3
∂ |u− a|1 +λ r1∂ |u|1 ∋ x− u. Then the only closed form solution of Ta(x) while a ≥ 0 can
be calculated in sections:

Ta(x) =



x−λ (r1 + r3) x > λ (r1 + r3)+a

a λ (r1 − r3)+a < x ≤ λ (r1 + r3)+a

x−λ (r1 − r3) λ (r1 − r3)< x ≤ λ (r1 − r3)+a

0 −λ (r1 + r3)< x ≤ λ (r1 − r3)

x+λ (r1 + r3) x ≤−λ (r1 + r3)

. (16)

In the end we obtain the solution of the proximal mapping proxλ (ϕk+g)(x) as:

proxλ (ϕk+g)(x) =

{
Ta(x) a ≥ 0

−T−a(−x) a ≤ 0
. (17)

The details of MRI reconstruction algorithm in ℓ1-constrained CSC model are described
in Algorithm 1.

Algorithm 1 ℓ1-constrained convolutional sparse coding in MR image reconstruction.

Input: Partially sampled Fourier measurement yyyl , local convolutional dictionary DL

Output: Estimated coding αααk
l,i.

Initialization: ααα0
l,i = ααα1

l,i,γ > 0,h < 2γ
L

For iteration k= 0 : K −1

compute ▽ f
(

αααk
l,i

)
using equation (13)

αααk+1/2
l,i = αααk

l,i +
1

1+γh

(
αααk

l,i −αααk−1
l,i

)
− h2

1+γh ▽ f
(

αααk
l,i

)
,

αααk+1
l,i = prox h2

1+γh (ϕk+g)

(
αααk+1/2

l,i

)
,

end for
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2.3 Iterative Neural Network via Unfolding CSC
We expand the proposed method to improve MRI reconstruction into a structured network.
The network structure is composed of a series of blocks, each corresponding to an iteration of
the proposed reconstruction method. In practice, we use DNNs composed of convolutional
and deconvolutional layers to realize the iteration of variables, as shown in Figure 1. Matrix
multiplication DLααα l,i can be replaced by convolution operation dddm ∗ααα l,i. {dddm} and

{
ααα l,i

}
can be naturally viewed as the convolutional kernels and feature maps in DNNs, respectively,
where m is the filter number. The partially sampled Fourier encoding matrix Fu is fixed.

Figure 1: The framework of the proposed iterative neural network design via unfolding CSC.

In the end, we apply the mean square error (MSE) between the original image YYY and the
reconstructed XXXn to represent the total loss function:

LMSE = ∥YYY −XXXn∥2
2 . (18)

Where XXXn is the reconstruction result of the n-th iteration. Considering the termination
criterion, it requires the residual sssk+1 = αααk+1

l,i −αααk
l,i must be small according to [6].

3 Experimental Results
Several groups of comparative experiments are set up to compare the performance of the
proposed method with others, such as ISTA-Net+, ADMM-Net and l0-CSC-Net [25]. For
fairness, we train these methods on the same randomly selected 50 images. The size of
images we use in the synthetic experiments is 512× 512, and data acquisition is simulated
by subsampling the two-dimensional discrete Fourier transform of the MR images. The
measurement matrix Fu ∈RM×N is generated as a random Gaussian matrix. In the test phase,
the trained network adopts Peak Signal-to-Noise Ratio (PSNR) as the evaluation standard. In
order to further verify the stability of the proposed method, we also conduct reconstruction
experiments on the polluted images, and compare it with the advanced IDPCNN method [1].
All of the above experiments were implemented on a PC configured with Intel (R) Core
(TM) I5-8265U CPU @ 1.60ghz and 4G Byte RAM.
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3.1 Reconstruction performance under different undersampling ratios
In this part, we evaluate the reconstruction performance of the proposed method under differ-
ent undersampling ratios. Our method is compared with the advanced ISTA-Net+, ADMM-
Net and l0-CSC-Net algorithms, and PSNR(dB) is used for evaluation. We adopt pseudo
radial as the sampling scheme and five undersampling ratios (10%, 20%, 30%, 40% and
50%) during the experiment to obtain the Fourier measurements. The corresponding PSNRs
are given in Table 1.

Methods
Undersampling ratios

10% 20% 30% 40% 50%

Proposed 38.46 39.75 41.32 42.47 43.79

ADMM-Net 26.98 29.74 31.82 34.23 35.32

l0-CSC-Net 27.70 31.92 34.09 35.55 36.89

ISTA-Net+ 37.16 38.73 40.89 42.52 44.09

Table 1: Reconstruction performance in PSNR (dB) under different undersampling ratios.

As shown in Table 1, our method generally performs better than other methods under
lower MRs, which may be because, for higher levels of sparsity, using variance regularization
on the codes can better utilize the multi-layer structure of the convolution network [13].
When the under-sampling ratio is 40%, its reconstruction performance is nearly equal to
that of the advanced ISTA-Net+ algorithm. We further compare the time required for the
reconstruction by these methods. The reconstruction time data per epoch in Table 2 shows
that our method can complete the reconstruction at a quite fast speed.

Methods Proposed ADMM-Net l0-CSC-Net ISTA-Net+

Times(seconds) 0.0618 0.8026 0.0698 0.1467

Table 2: Average reconstruction time of different methods.

3.2 Experiments on Noisy Data
In order to test the sensitivity of the proposed method to images polluted by complex Gaus-
sian white noise, we tested the reconstruction quality. We choose the human brain test di-
agram Figure 2 (a) for the noise experiment. A complex valued Gaussian white noise with
standard deviation σ= 0.03 is added to the k-space data sampled from Figure 2 (a) under
30% pseudo radial sampling pattern, to obtain the polluted image Figure 2 (b). Then we
test the reconstruction quality and error performance of ISTA-Net+, ADMM-Net, l0-CSC-
Net, IDPCNN and our method. The reconstruction results are shown in Figs 2 (c)-(g). The
corresponding error magnitudes of the reconstruction are displayed in Figs 2 (h)-(l).

Although the reconstructed images of ISTA-Net+ and IDPCNN are relatively clear, the
residual image effects are average. l0-CSC-Net performs good in the residual image effects,
but the textures and edges of the reconstructed image are not clear enough. The reconstructed
image performs well in image contour and detail texture restoration. It can indicate that our
method provides a more accurate reconstruction of image contrast and richer details in noisy
cases.
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(a) (b)

(c) (d) (e) (f) (g)

(h) (i) (j) (k) (l)

Figure 2: Reconstruction results of the image under different noise levels. From left to right
are of ISTA-Net+, ADMM-Net, l0-CSC-Net, IDPCNN and our method.

4 Conclusion

In this paper, we propose a model-based structured deep network to realize MRI reconstruc-
tion. The proposed network makes use of the advantages of CSC and deep learning at the
same time. Based on the CSC model, the improved ISTA-IDF algorithm is introduced and
expanded into a network with better convergence speed in the MRI reconstruction process.
Experimental results show that the proposed network performs better at a low sampling rate
and ensures that the reconstructed image is clearer and has more detailed information while
speeding up the reconstruction process than the state-of-the-art methods.
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